
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Human-in-the-loop Approach
to Generate Annotation Usage Rules

A Case Study with MicroProfile

Anonymous Author(s)

Abstract
Frameworks and libraries provide functionality through Applica-
tion Programming Interfaces (APIs). Developers might misuse these
APIs, because their usage rules are often implicit, undocumented,
or not readily available in the form of checkable rules. At the same
time, manually writing usage rules for each API is time consum-
ing. Therefore, researchers have proposed various techniques to
automatically mine API usage rules. However, mined rules are not
always accurate, resulting in false positives when used for misuse
detection. To overcome these trade-offs, we combine rule mining
and manual rule authoring approaches by creating a human-in-the-
loop API usage rule generation pipeline. Based on our industrial
collaborator’s needs, our work focuses on generating annotation-
based API usage rules for MicroProfile, a framework designed for
building microservices using Enterprise Java. We use a frequent-
itemset based pattern-mining technique to mine MicroProfile anno-
tation usage rules and design a GUI-based rule validation tool (RVT)
that allows experts to browse through the mined rules to validate
(accept, edit, discard) them. Our pipeline then automatically gen-
erates checkable API usage rules from the confirmed rules, which
can then be used to detect misuses or to enhance documentation.
To assess the usefulness of having mined rules as a starting point
for rule authoring and to assess the usability of RVT in validating
rules, we perform a user study with MicroProfile API experts.

Keywords
Annotations, Microprofile, API usage rules, API misuse
ACM Reference Format:
Anonymous Author(s). 2018. A Human-in-the-loop Approach to Generate
Annotation Usage Rules: A Case Study with MicroProfile. In Proceedings of
Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 10 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Java annotations provide meta-information about the program el-
ements that they annotate. For example, the @Deprecated anno-
tation indicates that the annotated program element is no longer
supported [1]. Annotations are widely used in various types of
Java applications including enterprise Java applications [14, 49].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 @Liveness

2 public class AuthServiceHealthCheck implements HealthCheck {

3 @Override

4 public HealthCheckResponse call() { /*omitted*/ }

5 }

Figure 1: An example illustrating the usage of the MicroPro-
file @Liveness annotation.

Major Java enterprise frameworks, such as Spring [38] and Micro-
Profile [26], facilitate the development of enterprise applications
mainly through annotations.

MicroProfile is a collection of specifications that provides Appli-
cation Programming Interfaces (APIs) for client developers to create
applications with a microservice architecture (“small, autonomous
services that work together”) [26, 27]. For example, the MicroProfile
Health specification provides mechanisms to check whether a ser-
vice is started, ready to accept requests, or live [11]. MicroProfile
provides these functionalities mainly through annotation-based
APIs. For example, in Figure 1, the @Liveness annotation is used
to check whether the authorization service is live [5]. There are
different implementations of MicroProfile specifications such as
Open Liberty [21], Helidon [34], and Payara [31].

Similar to how API calls have usage rules that determine cor-
rect behaviour (e.g., hasNext() must return true before invoking
next() on an Iterator object to avoid throwing a NoSuchElement-
Exception [40]), annotations also have usage rules. For example,
as shown in Figure 1, the target class of the @Liveness annota-
tion must implement the HealthCheck interface to register for a
liveness check [5]. Container management systems such as Kuber-
netes use liveness checks to see if a particular container needs to
be restarted [7]. Violation of this usage rule will cause the liveness
check to not function properly, without showing any explicit error
message. We refer to such violations of annotation usage rules as
API misuses, or misuses for short.

To prevent annotation misuses, we would ideally have access to
checkable usage rules and tools that allow automated checking of
client code against these rules. There are existing tools that enable
writing annotation usage rules and scanning a target codebase for
misuses [8, 25, 50]. However, such tools assume that the usage
rules are already known and readily available to encode, which
is typically not the case [36, 44]. Additionally, manually creating
API usage rules from scratch requires human effort, which can be
difficult and time-consuming [20, 39].

To address the issues of writing API usage rules from scratch, re-
searchers have utilized patternmining techniques [10, 23, 28, 40, 47].
Pattern mining discovers usage rules in an automated fashion. The
general idea is that if the frequency of a usage pattern is more than

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 2: An overview of our human-in-the-loop rule gener-
ation approach.

a user specified frequency, we consider that pattern as a rule [35]
and violations of this pattern as a misuse. Researchers have mined
different types of code artifacts, such as source code [28, 40, 47],
API change history [23], and execution traces [10], to extract rules
automatically. However, misuse detectors that directly use mined
rules to detect misuses suffer from low precision, with the state-
of-the-art detector having only 33% precision [40], which limits
practical use. Reasons for the low precision include the fact that
mined patterns may represent common usages (i.e., idioms) instead
of rules. Mined patterns may also represent rules that are not en-
tirely correct (i.e., partially correct rule). A partially correct rule
might have some missing or extra elements.

Overall, manually writing API usage rules from scratch is time
consuming but leads to more accurate rules; on the other hand,
automatically mining patterns relieves the manual burden but can
lead to inaccurate rules. In this paper, our goal is to generate an-
notation usage rules by combining the advantages of these two
approaches, while mitigating their disadvantages. Our main idea
is to introduce a human into the loop, but without the full burden
of authoring rules from scratch. We use mined, unverified annota-
tion usage rules (i.e., candidate rules) as starting points for human
experts to create usage rules so that the process of creating rules
will be less difficult and tedious. At the end of this process, we have
human-validated annotation usage rules that can be directly used
for detecting misuses or enriching documentation.

In this paper, we describe our industrial collaboration to create
a human-in-the-loop approach for generating MicroProfile annota-
tion usage rules. Figure 2 shows an overview of our approach. We
first mine candidate rules from MicroProfile client projects (Step
1). We then present the mined candidate rules to human experts
for validation (Step 2). Finally, we automatically generate static
analysis checks from the confirmed rules; these checks are used
by our misuse detector to find annotation misuses in MicroProfile
client projects (Step 3). In our previous work, we explored using
frequent-itemset mining to mine candidate MicroProfile annotation
rules [12]. This paper thus focuses on Steps 2 and 3 of the process,
which are essential to combine the two worlds of automated pattern
mining and manual rule authoring.

Specifically, we focus on validating mined candidate rules and
developing a misuse detector encoded with the validated rules.
To validate mined candidate rules, we develop a web-based tool,
Rule Validation Tool (RVT)1. RVT automatically encodes mined
candidate rules in a domain-specific language (DSL) and presents

1We plan to open-source RVT upon acceptance of this paper.

1 @Counted(name="rate")

2 public int getCurrentRate() { return rate; }

Figure 3: An example illustrating the usage of the MicroPro-
file @Counted annotation [4].

them to experts for validation. RVT allows experts to not only
validate the presented candidate rules, but also modify the ones that
are partially correct. After experts validate or modify the candidate
rules, RVT generates a final set of static analysis checks for the
validated rules. We also develop a misuse detector in the form of
a Maven plugin that uses the generated static analysis checks to
detect annotation misuse in client projects. Finally, we perform a
user study with three Microprofile API experts from our industry
partner to assess the usability of RVT for validating and modifying
mined candidate rules. Our results show that API authors find that
having a starting point for rule authoring is useful, and also finds
our rule format to be easily understandable. Our participants also
provide us with additional feedback on how to improve RVT and
its DSL for authoring rules, which we discuss in this paper.

2 Background
In this section, we first introduce our target framework, MicroPro-
file. We then introduce Java annotations and how the MicroProfile
framework makes use of them. We also briefly explain our pre-
viously developed approach for mining MicroProfile annotation
usage rules [12], since we used these mined rules as input to RVT.

2.1 MicroProfile
MicroProfile is a collection of specifications that provide client de-
velopers with all the necessary APIs to facilitate the development of
microservices applications in Java [26]. Each MicroProfile specifica-
tion targets a specific functionality such as Configuration, Health,
and Metrics. MicroProfile provides these functionalities mostly
through annotations. For example, the @Counted annotation from
MicroProfile Metrics shown in Figure 3 tracks the number of times
the annotated program elements (i.e., methods or constructors) get
invoked [4]. Our industry partner is interested in ensuring proper
usage of MicroProfile annotations by client developers.

2.2 Java Annotations
Java annotations provide meta-information about program ele-
ments (e.g., classes, fields, and methods) they annotate [3]. De-
velopers use annotations for different purposes such as dependency
injection, data binding, and code generation [49].

There are certain usage rules that client developers must follow
when using annotations. We divide these rules into two categories:
explicit and implicit usage rules. Explicit usage rules are those ex-
plicitly defined by the framework or library developers when they
declare an annotation, and which a compiler can automatically
check. For example, framework developers can restrict the types of
program elements an annotation can be used on (e.g., fields or meth-
ods) [2]. The compiler would then complain if client developers use
the annotation on a different program element.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Human-in-the-loop Approach to Generate Annotation Usage Rules Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

On the other hand, implicit usage rules are associated with the
way an annotation is used in combination with other program el-
ements including other annotations, and are not checked by the
compiler. For example, a class annotated with the @Liveness an-
notation must implement HealthCheck as shown in Figure 1. Not
implementing HealthCheck will cause the @Liveness annotation
to be ignored, without showing any explicit error message. In this
work, we are interested in generating implicit usage rules for Mi-
croProfile annotations to prevent their misuse.

2.3 Pattern mining

Pattern mining seeks to automatically extract usage patterns or
rules [35]. In our case, a pattern refers to a way an annotation is
used in combination with other program elements, including other
annotations. The main premise behind pattern mining is that a
frequent usage represents a usage rule. We refer to mined rules that
are not validated by experts as candidate rules. In our previous work,
we devised a frequent-itemset based pattern mining approach to
mine candidate rules for MicroProfile annotations [12].

Frequent-itemsetmining is a datamining technique that ismainly
used for association rule learning to discover interesting relation-
ships between items in large databases [32]. For example, given
milk, bread, and butter items in a store, we may have observed the
following purchases from five different customers: {bread}, {milk,
bread}, {milk, bread}, {milk, bread, butter}, and {bread, butter}. In
this example, if we consider a purchase that occurs at least three
times as a frequent purchase, we have {bread} and {milk, bread} as
frequent purchases or frequent itemsets. These frequent itemsets
can be then used to generate association rules. Association rules
are relational rules of the form “If 𝑋 , then 𝑌 ”, or more precisely
𝑋 =⇒ 𝑌 where𝑋,𝑌 ⊆ 𝐹 and 𝐹 is a frequent itemset. The “if” part is
called antecedent, and the “then” part is called consequent. For the
above frequent itemset {milk, bread}, we will have milk =⇒ bread,
bread =⇒ milk, or both candidate rules.

Figure 4 shows an example candidate rule that our previous
pattern-mining approach discovers [12]. Each item in a candi-
date rule represents a tuple {𝑃1, 𝑅, 𝑃2}, where 𝑃1 and 𝑃2 are pro-
gram elements, including annotations, and 𝑅 is a relationship be-
tween the program elements. For example, for the item “Class
annotatedWith @ApplicationScoped” in Figure 4, Class and
@ApplicationScoped are program elements and annotatedWith
is a relationship. In our previous work [12], we define the follow-
ing eight different relationships for MicroProfile annotation usage
based on our manual analysis of known annotation usage rules:
• annotatedWith represents what annotation a program element

has been annotatedwith. A program element can be a class, field,
method, constructor, and method and constructor parameters.

• hasType represents the data type of a field.
• hasParam represents a parameter of a method, constructor, or

annotation.
• hasReturnType represents the return type of a method.
• extends represents a class extension.
• implements represents an interface implementation.
• definedIn represents an annotation parameter value that has

been defined in microprofile-config.properties.

1 {

2 "antecedent": [

3 "Class annotatedWith @ApplicationScoped",

4 "Class annotatedWith @Readiness"

5],

6 "consequent": [

7 "Class implements HealthCheck"

8]

9 }

Figure 4: A candidate rule mined by Anon. Authors [12].

• declaredInBeans refers to the bean declaration of a class in
the beans.xml file.
Our mined candidate rules can have items with any of the above

eight relationships. In our previous work, we showed that our
mining technique is effective in discovering rules including new,
previously unknown rules [12]. However, this evaluation was done
manually with only one API expert who was one of our direct
industry collaborators. In this paper, we specifically focus on the
end-to-end streamlined process of providing the means for API ex-
perts to easily validate these mined candidate rules through proper
tool support, as well as to automatically generate annotation usage
rules that can be used in misuse detection.

3 Generating Annotation Usage Rules
In this section, we describe our approach to generate annotation us-
age rules and developing amisuse detector forMicroProfile. Figure 2
illustrates the overview of our approach. We first use our existing
pattern-mining approach to mine candidate usage rules from Mi-
croProfile client projects (Section 2.3). We then present the mined
candidate rules to experts for validation, through RVT. Finally, we
develop a misuse detector that uses the validated rules to detect
misuses. In this section, we describe the specific contributions of
this paper: the rule validation and misuse detection components.

3.1 Rule Validation Tool (RVT)
To facilitate rule validation, we develop a web-based Rule Validation
Tool (RVT). Rule validation is a twofold process. Given mined candi-
date rules, RVT automatically encodes them in RulePad format [25].
RVT then presents the encoded rules to experts for validation who
can confirm a rule as is, confirm a rule after modifications, or reject
a rule as invalid.

3.1.1 Rule Encoding. The candidate annotation usage rules that
we mine are in a JSON [15] format as shown in Figure 4. Since
experts will read, modify, and validate the candidate rules, we need
to present them in a format that is easy to comprehend. Overall,
we do not want experts to spend too much time trying to learn
and understand the rule format, because it defeats the purpose of
reducing human effort in generating rules.

To present the mined candidate rules in a specific format, we
considered multiple existing domain-specific languages (DSLs) de-
veloped for encoding various types of API usage rules. Specifically,
we considered AnnaBot [8], RSL [50], CrySL [19], RulePad [25],
ModelAn [29], and Smart Annotations [17]. We also considered

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

1 class with annotation "ApplicationScoped" and

annotation "Readiness"

2 must have implementation of "HealthCheck"

Figure 5: An example illustrating the RulePad rule for the
mined candidate rule shown in Figure 4.

the original JSON format of the mined candidate rules. We discuss
these options with our industry partner to understand how they
perceive their pros and cons.

Among the DSLs, we exclude ModelAn [29] and Smart Annota-
tions [17], because they require modifications to the MicroProfile
source code. CrySL [19], on the other hand, is designed for the spec-
ification of correct cryptography API uses in Java, and it heavily
focuses on control and data-flow relationships, whereas annotation
usage does not require control and data-flow relationships. There-
fore, we also exclude CrySL from potential formats for presenting
candidate rules. AnnaBot [8] and RSL [50] are specifically designed
for writing annotation usage rules in a declarative way. However,
they only support annotation usage rules between two annota-
tions. For example, if @X, then @Y. They do not support usage rules
between annotation and other program elements (e.g., field and
method). For example, if @X, then a method must return Z. However,
most of our mined candidate rules specify relationships between
annotation and other program elements [12]. Therefore, we also
exclude AnnaBot and RSL from potential formats for presenting
candidate rules. In the end, we narrow down our potential formats
to the following three options: (1) use the original JSON format, (2)
create a DSL from scratch specifically designed for our needs, and
(3) use an existing DSL that we have not ruled out yet.

The original JSON format (option 1) is concise and simple to
understand. However, the structure of the mined candidate rules,
specifically items in both the antecedent and consequent, is ad-hoc
at best. More importantly, the JSON rule format does not have a
grammar, which means any post-processing of candidate rules will
involve lots of string manipulations and regular expressions.

Creating a DSL from scratch (option 2) gives us the advantage of
customizing it according to our requirements. However, creating
a DSL from scratch is time-consuming, when compared to using
an existing DSL such as RulePad. RulePad [25] is a tool that al-
lows users to write code design rules (e.g., function with type
"void" must have name "set...") and check the source code
for any violations of those rules. Developers can create rules using
a semi-natural DSL created by the RulePad authors. For example,
Figure 5 shows how the mined rule from Figure 4 can be expressed
in RulePad’s DSL. Based on the feedback we received from our in-
dustry collaborators, we decide to use RulePad (option 3), because:
(1) it has an intuitive English-like syntax, (2) rules have IF/THEN
format that fits nicely with the mined rules, and (3) it has a gram-
mar, making later extensions easier to implement. However, there
were also three RulePad shortcomings that we needed to address.

First, RulePad does not support writing rules for the follow-
ing relationships that appear in MicroProfile candidate rules: (1)
method/constructor parameters having annotations, (2) annota-
tions having parameters, and (3) configuration files. Therefore, we

extend RulePad’s grammar to support those relationships. Second,
some RulePad keywords, specifically declaration statement and
function, do not reflect Java language terminology. This might
affect the readability or comprehensibility of rules. Therefore, we
change the keywords to make them better align with Java language
terminology. We change declaration statement to field and
function to method.

Third, some of RulePad’s syntax was perceived as to verbose.
To address this, we introduce shortcuts into the DSL. We create
a shortcut to express method, constructor, or annotation param-
eters. For example, a String parameter with the name foo is ex-
pressed as parameter with type "String" and name "foo"
in RulePad’s original DSL. We shorten it to parameter "String
foo", mirroring Java-style parameter declaration. We also create a
shortcut that allows grouping of annotations from the same pack-
age. For example, to require one of JAX-RS HTTP method annota-
tions (GET, POST, PUT, DELETE) [13], the corresponding RulePad
expression is annotation "javax.ws.rs.GET" or annotation
"javax.ws.rs.POST" or annotation "javax.ws.rs.PUT" or
annotation "javax.ws.rs.DELETE". We condense that expres-
sion into annotation"javax.ws.rs.[GET|POST|PUT|DELETE]".

RVT takes the mined candidate rules in JSON format and con-
verts them into RulePad rules, which we present to experts for
validation through a Graphical User Interface (GUI) described next.

3.1.2 RVT’s GUI. RVT provides a GUI for experts to go through
and validate the presented candidate rules. Figure 6 shows the main
elements of RVT’s GUI. The Rule Authoring Editor 1○ presents
the candidate rule, encoded in RulePad format, that needs to be
validated. To improve the readability of the presented rules, we
equip the editor with syntax highlighting and formatting features.
The Code Preview 2○ provides a minimal Java code example to show
what the presented candidate rule corresponds to in actual Java code.
That preview also highlights the code representing the antecedent
(orange) and the consequent (green), enabling visual separation
between the two parts of a candidate rule. The goal of the Code
Preview is helping experts further understand the candidate rule
presented in the Rule Authoring Editor. The progress indicator 3○
shows the total number of candidate rules that need to be validated,
the position of the currently presented rule among all the candidate
rules, and the number of candidate rules left to validate. RVT has
two labeling buttons 4○ (“Confirm rule” and “Not a rule”) to label
the presented candidate rule as a correct or incorrect rule. RVT also
has two rule navigator buttons 5○ to navigate through candidate
rules. Finally, the question mark 6○ indicates help and opens a
tutorial page on using RVT. The tutorial page contains information
about the RulePad grammar and all possible actions that experts
can perform using RVT. Overall, RVT’s GUI not only presents
the encoded rules but also provides the necessary features to help
experts understand the presented rules.

3.1.3 Rule Validation Process. Once RVT presents a candidate rule,
experts can take one of the following three actions to validate and
label the rule:
• Confirm the rule as-is: If the presented candidate rule is correct,

experts can label the rule as correct by clicking “Confirm rule”.
• Confirm the rule with changes: If the presented candidate rule is

a partially correct rule, e.g., the rule has some missing or extra
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Human-in-the-loop Approach to Generate Annotation Usage Rules Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 6: The main GUI elements of our Rule Validation Tool (RVT). Features 1–6 are detailed in Section 3.1.

items, experts can edit the presented rule by adding, removing,
or modifying items of the rule using the Rule Authoring Editor.
After finishing their editing, they can confirm the edited rule
by clicking “Confirm rule”.

• Label the rule as incorrect: If the presented candidate rule does
not represent any annotation usage rule, experts can discard
this rule by clicking “Not a rule”.
For each presented candidate rule, RVT stores the validated form

of the rule and the label in a database. Once experts validate all
candidate rules, we use only confirmed rules for misuse detection.

3.2 Misuse Detector
Since our industry partner is interested in ensuring the correct
usage of MicroProfile annotations by client developers, we next
focus on developing a misuse detector that uses the correct rules
from the previous step to detect annotation misuses.

We first consider using RulePad for misuse detection as it comes
with a misuse detector out of the box. However, we find that
RulePad’smisuse detector is not suitable for our needs. First, RulePad’s
misuse detector works in a browser. It has an IDE plugin that sends
client code to the web UI for misuse detection. To use RulePad’s
misuse detector, both the web UI and the IDE plugin need to run
simultaneously. However, we are interested in using the detector
as a standalone tool. Second, RulePad’s misuse detector transforms
Java code into XML representations, which do not contain resolved
types. Third, the XML representations do not represent some of the
Java code constructs such as the data type of annotation parame-
ters. We could have resolved some of the issues by introducing a
preprocessing step before RulePad transforms Java code into XML
representations. However, adding such a preprocessing step would
have negatively affected the performance of RulePad’s misuse de-
tector. Instead, we build our own misuse detector as follows.

Amisuse detectormay be implemented as a build tool (Maven [24]
or Gradle [43]) plugin or an IDE plugin. Client developers can use a
build plugin as a part of their continuous integration (CI) pipeline.
However, locally, client developers have to explicitly run a build

plugin to detect misuses. Unlike build plugins, an IDE plugin would
detect misuses instantly as developers are working on their code.
However, an IDE plugin cannot be used in the CI pipeline. After a
discussion with our industry collaborator, we decided to build our
misuse detector as a Maven plugin to enable CI integration.

Our misuse detector uses the confirmed rules to generate static
analysis checks. We use JavaParser [30] to parse the Java files of
the target project and to resolve types. Our static analysis checks
are also encoded using JavaParser. We automatically extract the
antecedent part of a RulePad rule and search for occurrences of
it in a given Java file’s Abstract Syntax Tree (AST). If we find an
occurrence of the antecedent, we then check if the consequent
holds. If not, then we have detected a misuse. The detector scans
one Java file at a time of the target project for any misuse of the
available rules. Once the detector scans all the Java files of the target
project, the detector prints a detailed report for each misuse it finds
in the target client project. The report contains the misused rule,
the misuse location, and the missing element. Figure 7 shows an
example of a report generated by our misuse detector.

To verify that our misuse detector works as expected, we evalu-
ate it against the set of 16 open-source and proprietary MicroProfile
client projects with known misuses from our previous work [12]. In
that work, we detected misuses of 5 distinct usage rules. We encode
these rules in our extended RulePad format and input them to our
misuse detector, which automatically converts them into static anal-
ysis checks to detect misuses. In contrast, misuse checks from our
previous work are entirely written manually. Our misuse detector
successfully detects all previously identified misuses, demonstrat-
ing that our static analysis check generation works correctly.

4 User study
To evaluate the usefulness of RVT in modifying and validating the
mined candidate rules, as well as the usefulness of the whole idea
of using mined rules as starting points, we conduct a user study
with MicroProfile API experts. Our goal is to answer the following
three research questions:

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1 $ mvn violation-detector: scan

2 [WARN] For rule: QueryGraphQLAPIRule

3 [WARN] class with function with annotation "Query" \

4 [WARN] must have annotation "GraphQLApi"

5 [WARN] Class FooBar is missing the following element(s):

6 [WARN] [@org.eclipse.microprofile.graphql.GraphQLApi]

7 [WARN] Location: (line 22, col 1) - (line 77, col 1)

Figure 7: A sample report generated by our misuse detector.

RQ1. Is the rule specification DSL in RVT expressive enough for
specifying rules? We adopt RulePad with some extensions as our
DSL of choice for encoding rules. There is a possibility that an API
expert might want to specify a constraint that cannot be expressed
using RulePad. Thus, wewant to know how expressive our extended
RulePad DSL is for authoring annotation-based API usage rules.

RQ2. Is RVT useful for the modification and validation of mined
rules? The key concept in our proposed pipeline is having a human
in the loop. Thus, we want to know if RVT makes it easy for experts
to author and validate the mined rules.

RQ3. Are candidate rules effective in alleviating the difficulties of
writing API usage rules from scratch? We want to understand if the
mined candidate rules provide good starting points for API experts
when authoring rules. Overall, we want to determine if the idea of
having mined rules as a starting point is useful to API experts.

4.1 Experiment Setup
The experiment is an online, 90-minute Zoom session where ex-
perts use RVT to validate the presented candidate rules. We audio
and video record the session, with participants’ consent and after
our university’s ethics clearance, for post-analysis purposes. The
experiment is divided into three parts that we describe below.

4.1.1 Tutorial and setup. At the beginning of the experiment (up
to 30 minutes), experts go through a tutorial that we prepared to
get familiar with RVT and the DSL that we use to present rules (i.e.,
extended RulePad).

4.1.2 Live experiment. After participants get familiar with RVT,
we proceed to the main experiment task, where API experts validate
candidate rules encoded in the RulePadDSL. For each candidate rule,
we first ask the participants to rate it in terms of understandability
of the presented rule on a scale of 1 to 3 (1-hard to understand,
2-neither hard nor easy to understand, 3-easy to understand). This
task enables us to quantify how easy it is for API experts to under-
stand a given rule and contributes to the evaluation of RQ1. After
getting familiar with the presented rule, participants proceed to
validate it. Participants are allowed to use online resources such as
documentation and online discussion forums, if needed. To validate
a rule, participants can (1) confirm the rule as is, (2) confirm the rule
with changes, or (3) reject the rule. During this validation process,
we employ the think-aloud protocol [45] where we ask participants
to verbally share the reasoning behind their decisions. For example,
when a participant rejects a candidate rule, we ask them to share
the reasons that led them to this decision. This feedback can help
us improve the mining process.

4.1.3 Exit survey. At the end of the session, we ask participants
three rating-based (RB) and three open-ended (OE) questions. For

Table 1: Number of candidate rules mined for each MicroPro-
file specification [12]. One rule belongs to both GraphQL and
OpenAPI specifications, hence the total is 23, not 24.

MicroProfile Specification # mined rules # confirmed rules

Config 1 0
GraphQL 3 N/A
Health 3 3
JWT-Auth 2 N/A
Metrics 4 3
OpenAPI 6 2
REST Client 3 N/A
Reactive Messaging 2 2

Total 23 10

the rating-based questions, participants can also provide verbal
explanations for their ratings. We ask the following questions:
RB1: For rule authoring, having an existing candidate rule as a

starting point is easier than writing a rule from scratch
(strongly disagree, disagree, neither agree nor disagree,
agree, strongly agree). This question addresses RQ3.

RB2: Having a dedicated tool for rule validation makes it easy
to validate rules (from strongly disagree to strongly agree).
This question addresses RQ2.

RB3: How do you rate the difficulty level of editing rules using
RVT? (very hard to edit, hard to edit, neutral, easy to edit,
very easy to edit). This question addresses RQ2.

OE1: Are there additional code constructs you think need to be
a part of RulePad? This addresses RQ1.

OE2: What types of additional information could have assisted
you in validating the rules? This indirectly addresses RQ2
and enables us to know what other information experts
would find helpful.

OE3: Are there any additional rules you can think of that were
not presented? This question does not address a specific RQ
but enables us to understand what rules the mining process
cannot discover and what other code relationships need to
be tracked (which may require further RulePad extensions).

Our open-ended questions allow participants to share valuable
feedback with us, which helps us further improve our approach.

4.2 Participant Recruitment
MicroProfile API experts (i.e., direct contributors to various Micro-
Profile specifications) are the target population of our study. We
drafted a recruitment email that our industry collaborator sent to
6 MicroProfile API developers in their company. Our goal was to
recruit at least one expert for each MicroProfile specification that
we have mined rules for. Table 1 shows how many candidate rules
we mined for each MicroProfile specification. Three API experts
(P1, P2, P3) agreed to participate in the user study. Before the experi-
ment, for each participant, we collected background information on
which MicroProfile components they are familiar with and created
a set of candidate rules that contain APIs from these components.
P1, P2, and P3 are MicroProfile contributors, working in their cur-
rent teams for 4, 6, and 5 years, respectively. P1 is responsible for

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Human-in-the-loop Approach to Generate Annotation Usage Rules Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

OpenAPI, Reactive Messaging, and Config components; P2 is re-
sponsible for Health and P3 is responsible for Metrics. For the study,
P1, P2 and P3 validated 9, 3, and 4 candidate rules, respectively.

4.3 Results
Participants validated a total of 16 rules, and there were no common
rules shared between participants due to their different expertise.
P1, P2, and P3 confirm 4/9 rules, 3/3 rules, and 3/4 rules, respectively.
Overall, participants label 10/23 rules as correct, with all except
one rule (from MicroProfile Metrics) requiring modifications. All
presented rules for MicroProfile Health and Reactive Messaging are
partially correct. For MicroProfile Metrics, P3 considers the only
rejected rule as “best practice” and not necessarily incorrect.

We now present the main results of our user study, where we
focus on the whole pipeline rather than the accuracy of the mining
process, which we evaluated in our previous work [12].

RQ1: Expressiveness of the extended RulePad DSL in RVT.
Figure 8 shows how participants perceive the presented candidate
rules in terms of their understandability. The graph shows that the
majority of the presented candidate rules are easy to understand for
participants. P2 mentions that the English-like syntax of RulePad
makes it easy to learn in a short period of time. Recall that we
introduced two constructs to RulePad to reduce the verbosity of the
DSL (Section 3.1.1). We observe that P1 and P2 use the shortcut that
allows grouping of annotations from the same package, showing
the usefulness of the shortcut. We find that while the extended
RulePad is expressive enough to specify most of the code constructs
needed to encode annotation usage rules, there is still room for
improvement. Participants suggest that the extended RulePad can
be further improved by including the following code constructs:

(1) Specify mutual exclusivity. A rule might require usage of
only one annotation from a set of annotations. Currently, the
extended RulePad supports disjunctions (i.e., or) which does
not guarantee mutual exclusivity (i.e., xor).

(2) Invert a predicate. Our extension to RulePad does not support
negations. For example, our extension cannot encode the fol-
lowing hypothetical rule: a field with annotation A and not
with annotation B requires annotation C.

(3) Require overriding a specific method. Method overriding is
useful in two cases. First, it enables rule completeness. Cur-
rently, we can specify that a class needs to implement an inter-
face, but a complete rule must indicate which method needs
to be overridden/implemented from that interface. Second,
given a predicate, an expert might want to require overriding
specific methods (e.g., if class is annotated with X and extends
Y, then it must override method Z).

(4) Shortcuts for frequently used MicroProfile constructs such
as CDI beans, JAX-RS resource methods (i.e. a method that
is annotated with request method designators such as @GET
or @POST) or classes (i.e., a class that either is annotated with
@Path or contains at least one resource method). For example,
instead of saying method with annotation "Operation"
must have annotation "[GET|POST|PUT|DELETE|..]", an
expert can simplify the rule to method with annotation
"Operation" must be a JAXRS resource.

Figure 8: Understandability of candidate rules

Figure 9: RB1 results regarding having a starting point for
rule authoring. RB2 results regarding usefulness of having
a dedicated rule validation tool. RB3 results for levels of
difficulty of editing rules using RVT.

RQ2: Usefulness of RVT in modifying and validating candi-
date rules. Figure 9-RB2 shows what participants unanimously
agree that RVT is useful. Therefore, we conclude that having a ded-
icated tool for rule validation is useful for API experts. That said,
Figure 9-RB3 shows that our participants have varying opinions on
the level of difficulty of editing rules using RVT. P1 who rated "Nei-
ther hard nor easy" states that in some cases the rules written in the
extended RulePad format are not how they would be written as a
specification. For example, consider the following rule: “a field with
the @ConfigProperty annotation should have the @Inject anno-
tation unless the class has the @ConfigProperties annotation”. In
the extended RulePad, we encode the rule as “class with field
with annotation "ConfigProperty" must have annotation
"ConfigProperties" or field with annotation "Inject"”.
While this rule is correct, P1 argues that it is not natural to write the
rule in that format. Instead, P1 mentions that an API expert would
write the rule as “field with annotation "ConfigProperty"
must have annotation "Inject" unless enclosing class
has annotation "ConfigProperties"”. This aligns with the pre-
vious suggestion of supporting predicate negation in RulePad.

We now discuss what other information participants think can
help them in the rule validation process. From the existing assisting
components of RVT, participants find the code preview section
particularly helpful for visualizing how a rule might potentially
look. P3 states that the rules being presented pre-formatted makes
rules easier to understand. Participants share the following ideas
for potential enhancements:
• Easier access to Java documentation. Finding the correct docu-

mentation page may take time, and providing quick access to it
can be useful.

• Auto-completing fully qualified names (FQNs). When generat-
ing static analysis checks, we expect the validated rules to have
FQNs. While candidate rules have FQNs, it might be hard for
experts to know the FQN for every annotation/class they need

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

to add or modify. Providing such assistance can reduce the time
spent on looking for the correct package name.

• Syntax checking for the DSL. Participants believe that having a
syntax error checker can assist them in writing rules properly.

RQ3: Effectiveness of the mined rules in alleviating the dif-
ficulties of writing usage rules. Figure 9-RB1 illustrates what
participants think about having starting points for authoring rules.
Our results show that having starting points is helpful. According
to P1, given a rule, it is generally easier to point out the problems
with the rule. In a similar fashion, P3 states that as with anything
in tech, it becomes easier once you have something to work with.
In response to OE3, P1 states that there are probably additional
rules to encode; however, to find them, one needs to go through the
documentation. Note that this statement strengthens our argument
that having stating points reduces the effort of manually going
through documentation to find rules. Worse, not all API usage rules
are documented. In fact, 5/10 confirmed rules are not present in the
documentation; therefore experts would not even be able to find
them in the documentation.

One of the potential issues with finding API usage rules through
pattern mining is that a mined pattern can contain deprecated APIs.
There was one such rule that P2 had to validate. While converting
the candidate rule into the correct rule, P2 explains that the candi-
date rule uses the @Health annotation which has been deprecated
since MicroProfile Health version 2.0 and is no longer part of the
API [9]. This case shows that having human validation is critical
when it comes to mining rules.

4.4 Threats to Validity
Internal validity. Our user study focuses on API experts’ experience
and perception of the rule validation process. Our pipeline also
includes the last step where we generate static analysis checks
from the validated rules, which we use for misuse detection. While
this step is not evaluated in the user study, we verify that it works
correctly by ensuring that we can detect all previously known
misuses in 16 projects. However, we do not analyze any additional
unknown misuses that the detector finds.

Construct validity. To mine candidate rules, our pipeline uses our
previously developed and evaluated pattern mining technique from
our previous work [12]. The quality of the mining process can affect
the overall experience of participants in our user study. However,
the user study does not focus on measuring the correctness of the
rules but rather focuses on the editing and validation process.

External validity. Our goal was to validate all the mined rules
by at least one API expert. We reached out to six of the relevant
MicroProfile API experts working for our industry partner, but only
three agreed to participate. However, these three participants vali-
dated 16 out of 23 mined rules (70%) from five different MicroProfile
specifications. Although we could not validate all the mined rules,
the validated rules cover most of the annotation relationships in
our rules. Our work focuses on validating MicroProfile annotation
usage rules. While, in principle, our approach can be applied to
other annotation-based libraries, we present only a case study of
Microprofile and our findings may not generalize beyond that. Fu-
ture work can reuse our pipeline to investigate its applicability to
other libraries and frameworks.

5 Discussion

In this paper, we proposed a human-in-the-loop approach to gener-
ate annotation usage rules for MicroProfile. We developed a web-
based tool, RVT, to facilitate rule validation and generation. To
evaluate the usefulness of RVT and our approach, we performed
a user study with MicroProfile API experts. We now discuss the
implications of our findings.

1) Generating API usage rules. Our main objective in this paper
is to generate accurate annotation usage rules while reducing the
burden of writing them from scratch. Therefore, we use a pattern
mining technique to automatically mine candidate rules that pro-
vide starting points to experts for generating accurate rules. The
results of our user study (RQ3) show that all the API experts agree
or strongly agree that having starting points in the form of mined
candidate rules reduces not only the difficulty but also the effort
of writing rules. They state that it is easier and takes less effort to
work with candidate rules and find problems in the rules rather
than discovering a rule manually. Our API expert participants also
confirm 10 of the 16 presented candidate rules and modify nine of
the 10 confirmed rules, which indicates that most of the presented
candidate rules are partially correct or incorrect rules. Thus, us-
ing the mined candidate rules directly for misuse detection could
have produced a lot of false positives. Therefore, our approach
that introduces experts for validating the mined rules is critical for
generating accurate rules. The results also show that experts go to
extra lengths to produce accurate rules. For example, P2 checked
whether the generated rules use any deprecated APIs.

2) Facilitating rule validation. To facilitate rule validation, our
approach uses an extended version of the RulePad DSL. Not only
can experts use RVT to validate the presented rules, but they can
also modify them. Therefore, it is critical that the DSL is able to
express or construct annotation usage rules. While our results (RQ1
and RQ2) show that the DSL does not lack any grammar to express
the confirmed rules, participants would like the ability to express
API usage rules in a more natural form and with finer granularity.
For example, P1 states that RulePad’s DSL might not be the most
natural way to express a rule in some cases. However, expressing
a rule in a natural form can be challenging, because it might be
hard to find a consistent DSL format or syntax that allows natural
expression. Addressing this limitation requires another user study
where the focus is on the way experts naturally author rules without
adhering to a specific format. We can then analyze the produced
rules and see if there are common patterns in the rules that can
be incorporated into RulePad grammar. Additionally, introducing
more logical operators, such as XOR, NOR, and NOT, would allow
experts to express rules with finer granularity.

Another avenue for improvement is the assisting features in
RVT. Currently, the feature that has been brought up the most is
the auto-completion of fully qualified names. This feature will allow
experts to easily specify fully qualified names without consulting
documentation, which will improve the overall user experience.
We can implement the auto-completion feature by extracting fully
qualified names of MicroProfile APIs from the documentation and
storing them in a database integrated with our Rule Authoring
Editor. We can also provide easy access to Java documentation for
all the program elements used in the rule. This feature can be a

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A Human-in-the-loop Approach to Generate Annotation Usage Rules Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

part of the Code Preview where clicking on a program element
will open the corresponding Javadoc page. Finally, we can provide
another labeling button to allow experts to label a rule as a "best
practice". When used for misuse detection, the best practice rules
can produce warnings instead of errors. API experts also suggest
including a mechanism to check for syntax errors in the DSL.

3) Improving documentation. Our results show that 5/10 con-
firmed rules are not mentioned in the official documentation. Thus,
in addition to being used for misuse detection, the validated rules
can be used for improving MicroProfile documentation. This is fur-
ther confirmed by P1’s comment about issues with documentation
quality and how our approach can be useful in such cases. Let us
examine this in the case of MicroProfile OpenAPI. In a StackOver-
flow question [42], the author is confused as they do not know
where to put @OpenAPIDefinition annotation despite much dig-
ging through the documentation. The accepted answer points out
that the annotation needs to be put on the JAX-RS Application class
and references a Technology Compatibility Kit (TCK) in the GitHub
repository of the MicroProfile OpenAPI specification. The author
replies with "...Unfortunately just not well documented it seems". Sim-
ilarly, for one validated rule, P3 states that that particular rule is not
documented, and looking at the documentation for MicroProfile
Metrics, a developer would not necessarily know that rule. Our
approach can help discover usage rules in such cases, which can be
used to enhance documentation. While we only tried our approach
for Microprofile usages, P2 suggests that we can potentially extend
our approach to other Java specifications that use annotations.

6 Related Work

6.1 Mining API Usage Rules
Researchers have proposed various pattern mining techniques to
automatically extract API usage rules [16, 28, 35, 41, 46, 47, 51].
However, most of the pattern mining solutions focus on control
and data-flow relationships [28, 41, 46, 47], with little focus on
annotation usage. In general, annotation usage does not depend on
control and data-flow analysis.

To the best of our knowledge, with the exception of our own
previous work [12] discussed in Section 2.3, there is no existing
work on mining annotation usage rules. However, Liu et al. [22] use
deep learning to train an annotation prediction model, DeepAnna.
The model learns from the structural (abstract syntax tree) and
the textual (i.e. annotation name, method name, method contents)
context of the source code to recommend annotations and detect
their misuse. However, DeepAnna cannot specify reasons behind
its recommendations. For example, DeepAnna might suggest to use
the annotation @Liveness on a class (consequent), but it cannot
specify the reason behind that suggestion (antecedent). We need to
have both an antecedent and a consequent to create an annotation
usage rule. Moreover, DeepAnna focuses only on recommending
class and method annotations, while our work considers the repre-
sentation of annotation usage rules that involve fields, parameters
and configuration files in addition to classes and methods, and the
detection of misuses of such rules.

Pattern mining can produce rules that are insecure, overly sim-
plistic, or missing context [19]. Pattern mining techniques may also
mine usage rules for deprecated APIs, which are not useful. Thus, it

is critical to validate or correct the mined rules to transform them
into valid API usage rules.

6.2 Writing API Usage Rules
There is an abundance of rule authoring tools to write API usage
rules [8, 19, 25, 50]. Most of these tools have their ownDSL, and they
often target specific libraries or domains. For example, CrySL [19] is
designed for writing Java Cryptography API usage rules. It focuses
on control and data-flow relationships between different method
calls and does not support annotations.

There are also tools or DSLs that focus specifically on writing
usage rules for annotations. RSL [50] and AnnaBot [8] allowwriting
annotation usage rules in a declarative way. These tools support
logical and aggregate operations such as “AND”, “OR”, “NOT”, “at
most one” or “for all”. However, they do not support most of the rela-
tionships that our mining process produces. For example, AnnaBot
does not support writing rules that specify a relationship between
an annotation and a method return type. RSL, on the other hand,
only allows writing rules that check the existence of an annotation
on a program element.

Similar to previous DSLs, RulePad [25] allows software devel-
opers to create design rules and checks for misuses of these rules.
Unlike previous tools, RulePad focuses on creating checkable and
up-to-date documentation. Since the documentation is meant to be
read by developers, to make the design rules easy to understand,
RulePad provides an English-like DSL to encode rules in. RulePad’s
DSL has an IF/THEN structure which coincides with our mined
rules. It also supports most of the mined relationships. Therefore,
we use RulePad’s DSL in this work with some customization to
validate annotation usage rules.

Unlike focusing on usage of APIs from specific libraries or do-
mains, there are tools, such as PMD [33], SpotBugs [37] and Check-
Style [6], that focus on general-purpose static analysis. These tools
can be utilized to encode annotation usage rules. For writing custom
rules in these tools, developers need to use either a general-purpose
language such as Java or a querying language such as XPath (in the
case of PMD)[48]. However, prior work shows that DSLs are easier
to learn, read, and write than general-purpose languages [18]. Since
we want to make rule validation as intuitive as possible, we did not
choose a general-purpose static analysis tool for rule encoding.

The previous tools all provide external DSLs to encode the rules.
There has also been meta-annotation solutions that encode rules in
the source code directly [17, 29]. These solutions provide a set of
meta-annotations (i.e. an annotation that can be applied to other
annotations) to embed the usage rules in annotation source code.
Since such techniques require source code modifications which
would force us to modify the source code every time a new rule is
discovered, these solutions are not useful for our use case.

All the above tools assume that the rules are readily available.
However, someone needs to find the rules and encode them from
scratch. For example, Krüger et al. [19] went through all the Java
Cryptography API documentation, and manually authored all the
found rules in CrySL. There are two issues with this approach:
(1) it is time-consuming, and (2) authors will miss undocumented
rules. Our hybrid approach leverages pattern mining to reduce the
time spent on authoring rules from scratch. It can also discover
undocumented patterns.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

7 Conclusion
We introduce a human-in-the-loop approach for producing accurate
annotation usage rules of MicroProfile APIs. We leverage pattern
mining to produce starting points for writing API usage rules. We
build a specialized tool, RVT, to facilitate the rule validation process,
and a misuse detector to automatically generate static analysis
checks from correct rules. Tomake rules easily understandable, RVT
extends an English-like DSL called RulePad for encoding mined
rules. We evaluate our approach in a user study with MicroProfile
subject matter experts. The user study results show that having
starting points makes writing rules easier and that our proposed
pipeline can be used to automatically produce accurate MicroProfile
API usage rules. These usage rules can be integrated into static
analysis tools to helpMicroProfile client developers write less buggy
code, or they can improve the documentation.

References
[1] Deprecated (Java SE 17 & JDK 17). 2021. https://docs.oracle.com/en/java/

javase/17/docs/api/java.base/java/lang/Deprecated.html.
[2] Target (Java SE 17 & JDK 17). 2021. https://docs.oracle.com/en/java/

javase/17/docs/api/java.base/java/lang/annotation/Target.html.
[3] Annotations. 2014. https://docs.oracle.com/javase/8/docs/technotes/

guides/language/annotations.html.
[4] Counted (MicroProfile 2.0.1-SNAPSHOT API). 2018. https://

download.eclipse.org/microprofile/microprofile-2.0-javadocs-
test/apidocs/org/eclipse/microprofile/metrics/annotation/
Counted.html.

[5] MicroProfile Health#Liveness check. 2021. https://download.eclipse.org/
microprofile/microprofile-health-4.0/microprofile-health-spec-
4.0.html#_liveness_check.

[6] CheckStyle. 2022. https://checkstyle.org.
[7] Readiness Configure Liveness and Startup Probes. 2022. https:

//kubernetes.io/docs/tasks/configure-pod-container/configure-
liveness-readiness-startup-probes. [Last accessed: May 9, 2022].

[8] Ian Darwin. 2009. Annabot: A static verifier for java annotation usage. Advances
in Software Engineering 2010 (2009).

[9] MicroProfile Health Check 2.0 final. 2019. https://github.com/eclipse/
microprofile-health/releases/tag/2.0.

[10] Mark Gabel and Zhendong Su. 2008. Javert: fully automatic mining of general
temporal properties from dynamic traces. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering. 339–349.

[11] MicroProfile Health. 2021. https://download.eclipse.org/microprofile/
microprofile-health-4.0/microprofile-health-spec-4.0.html.

[12] Authors hidden for double-anonymous purposes. 2022. Mining Annotation
Usage Rules: A Case Study with MicroProfile. https://figshare.com/s/
81080bebdbb20d1eb12e. In 2022 14th International Conference on Software Main-
tenance and Evolution. IEEE.

[13] JAX-RS javax.ws.rs package. 2018. https://javadoc.io/doc/javax.ws.rs/
javax.ws.rs-api/2.1.1/javax/ws/rs/package-summary.html.

[14] Ajay Kumar Jha and Sarah Nadi. 2020. Annotation practices in Android apps.
In 2020 IEEE 20th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 132–142.

[15] JSON. . https://www.json.org. [Last accessed: May 31, 2022].
[16] Hong Jin Kang and David Lo. 2021. Active learning of discriminative subgraph

patterns for API misuse detection. IEEE Transactions on Software Engineering
(2021).

[17] Andy Kellens, Carlos Noguera, Kris De Schutter, Coen De Roover, and Theo
D’Hondt. 2010. Co-evolving annotations and source code through smart annota-
tions. In 2010 14th European Conference on Software Maintenance and Reengineer-
ing. IEEE, 117–126.

[18] Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Varanda João Maria Pereira, Matej
Črepinšek, Cruz Daniela Da, and Rangel Pedro Henriques. 2010. Comparing
general-purpose and domain-specific languages: An empirical study. Computer
Science and Information Systems 7, 2 (2010), 247–264.

[19] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. 2019.
Crysl: An extensible approach to validating the correct usage of cryptographic
apis. IEEE Transactions on Software Engineering 47, 11 (2019), 2382–2400.

[20] Tien-Duy B Le, Lingfeng Bao, and David Lo. 2018. DSM: a specification mining
tool using recurrent neural network based language model. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 896–899.

[21] Open Liberty. 2021. https://openliberty.io.
[22] Yi Liu, Yadong Yan, Chaofeng Sha, Xin Peng, Bihuan Chen, and Chong Wang.

2022. DeepAnna: Deep Learning based Java Annotation Recommendation and
Misuse Detection. 29th IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER) (2022).

[23] Benjamin Livshits and Thomas Zimmermann. 2005. Dynamine: finding common
error patterns by mining software revision histories. ACM SIGSOFT Software
Engineering Notes 30, 5 (2005), 296–305.

[24] Apache Maven. . https://maven.apache.org. [Last accessed: May 31, 2022].
[25] Sahar Mehrpour, Thomas D LaToza, and Hamed Sarvari. 2020. RulePad: interac-

tive authoring of checkable design rules. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 386–397.

[26] MicroProfile. 2022. https://microprofile.io.
[27] Sam Newman. 2021. Building microservices. " O’Reilly Media, Inc.".
[28] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-Kofahi, and

Tien N Nguyen. 2009. Graph-based mining of multiple object usage patterns.
In Proceedings of the 7th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT symposium on the Foundations of Software
Engineering. 383–392.

[29] Carlos Noguera and Laurence Duchien. 2008. Annotation framework validation
using domain models. In European Conference on Model Driven Architecture-
Foundations and Applications. Springer, 48–62.

[30] Java Parser. 2019. https://javaparser.org.
[31] Payara. 2022. https://www.payara.fish.
[32] Gregory Piatetsky-Shapiro. 1991. Discovery, analysis, and presentation of strong

rules. Knowledge discovery in databases (1991), 229–238.
[33] PMD. 2022. pmd.github.io.
[34] Helidon Project. 2021. https://helidon.io.
[35] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan

Ratchford. 2012. Automated API property inference techniques. IEEE Transactions
on Software Engineering 39, 5 (2012), 613–637.

[36] Mohamed Aymen Saied, Houari Sahraoui, and Bruno Dufour. 2015. An obser-
vational study on api usage constraints and their documentation. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 33–42.

[37] SpotBugs. 2021. https://spotbugs.github.io.
[38] Spring. 2022. https://spring.io.
[39] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller,

and Michael Pradel. 2020. Extracting taint specifications for javascript libraries.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering. 198–209.

[40] Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini.
2019. Investigating Next Steps in Static API-Misuse Detection. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). 265–275.
https://doi.org/10.1109/MSR.2019.00053

[41] Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini.
2019. Investigating Next Steps in Static API-Misuse Detection. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). 265–275.
https://doi.org/10.1109/MSR.2019.00053

[42] Where to put OpenAPIDefinition? 2019. https://stackoverflow.com/q/
59168710.

[43] Gradle Build Tool. 2022. https://gradle.org.
[44] Gias Uddin, Foutse Khomh, and Chanchal K Roy. 2019. Towards crowd-sourced

API documentation. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). IEEE, 310–311.

[45] Maarten Van Someren, Yvonne F Barnard, and J Sandberg. 1994. The think aloud
method: a practical approach to modelling cognitive. (1994).

[46] Andrzej Wasylkowski and Andreas Zeller. 2011. Mining temporal specifications
from object usage. Automated Software Engineering 18, 3 (2011), 263–292.

[47] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
object usage anomalies. In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. 35–44.

[48] XPath. 2022. https://developer.mozilla.org/en-US/docs/Web/XPath.
[49] Zhongxing Yu, Chenggang Bai, Lionel Seinturier, and Martin Monperrus. 2018.

Characterizing the Usage and Impact of Java Annotations Over 1000+ Projects.
arXiv preprint arXiv:1805.01965 (2018).

[50] Yaxuan Zhang. 2021. Checking metadata usage for enterprise applications. Ph. D.
Dissertation. Virginia Tech.

[51] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and
recommending API usage patterns. In European Conference on Object-Oriented
Programming. Springer, 318–343.

10

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Deprecated.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Target.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Target.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/metrics/annotation/Counted.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/metrics/annotation/Counted.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/metrics/annotation/Counted.html
https://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/metrics/annotation/Counted.html
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html#_liveness_check
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html#_liveness_check
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html#_liveness_check
https://checkstyle.org
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://github.com/eclipse/microprofile-health/releases/tag/2.0
https://github.com/eclipse/microprofile-health/releases/tag/2.0
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html
https://download.eclipse.org/microprofile/microprofile-health-4.0/microprofile-health-spec-4.0.html
https://figshare.com/s/81080bebdbb20d1eb12e
https://figshare.com/s/81080bebdbb20d1eb12e
https://javadoc.io/doc/javax.ws.rs/javax.ws.rs-api/2.1.1/javax/ws/rs/package-summary.html
https://javadoc.io/doc/javax.ws.rs/javax.ws.rs-api/2.1.1/javax/ws/rs/package-summary.html
https://www.json.org
https://openliberty.io
https://maven.apache.org
https://microprofile.io
https://javaparser.org
https://www.payara.fish
pmd.github.io
https://helidon.io
https://spotbugs.github.io
https://spring.io
https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1109/MSR.2019.00053
https://stackoverflow.com/q/59168710
https://stackoverflow.com/q/59168710
https://gradle.org
https://developer.mozilla.org/en-US/docs/Web/XPath

	Abstract
	1 Introduction
	2 Background
	2.1 MicroProfile
	2.2 Java Annotations
	2.3 Pattern mining

	3 Generating Annotation Usage Rules
	3.1 rvt (rvt)
	3.2 Misuse Detector

	4 User study
	4.1 Experiment Setup
	4.2 Participant Recruitment
	4.3 Results
	4.4 Threats to Validity

	5 Discussion
	6 Related Work
	6.1 Mining API Usage Rules
	6.2 Writing API Usage Rules

	7 Conclusion
	References

