

CAPTURE AND REPLAY TECHNIQUE FOR REPRODUCING CRASH IN

ANDROID APPLICATIONS

Ajay Kumar Jha, Woo Jin Lee

School of Computer Science and Engineering, Kyungpook National University

1370, Sankyuk-dong, Buk-gu, Daegu, Korea

ajaykjha123@yahoo.com, woojin@knu.ac.kr(Correspondence)

ABSTRACT
Software testing takes significant amount of time and

cost. Many in-house software testing techniques are

available but all the techniques can’t be used due to time

and budget constraints so limited testing efforts are

applied most of the time. Due to this limited testing effort

there is always chance of failing the software in the field.

To make this worse, developers don’t have any clue why

deployed software failed or crashed. When the software

crashes, stack trace is usually sent back to developer

which in most of the cases does not provide enough

information to pinpoint the cause of crash. We present a

capture and replay technique which addresses this

problem by recording the sequence of events in the field

before crash and reproducing the sequence of events in-

house after crash. Our approach is content-based which

records events and data associated with those events

during program execution. Our technique mainly focuses

on the Android applications but similar approach can also

be used for other object oriented applications.

KEY WORDS

Reproducing crash, field failure, capture, replay,

debugging, android applications

1. Introduction

Software behaves differently under different

circumstances which needs environment and input

commands to run. During in-house testing it is not

feasible to test the software under all the available

environment and input conditions which introduces non-

determinism in the software behavior. Even software

itself can cause non-determinism due to highly advanced

programming techniques like multi-threading. Debugging

software containing non-determinism behavior is highly

complex task.

 Debugging is all about reproducing the execution

and pin-pointing the bug. Cyclic debugging is still very

popular among developers in which a program is executed

repeatedly and the part of the program which causes the

bug is narrowed down till the actual bug is found. But if

program behaves differently in each execution then it is

impossible to reproduce the execution and cyclic

debugging is useless in this condition. So cyclic

debugging is only useful in sequential, deterministic

programs which produce the same execution in different

run.

 One way to solve this non-deterministic problem

in debugging is to reproduce the execution and this can be

achieved by recording the execution and replaying the

recorded execution while debugging. Record and replay

solves the problem of debugging non-deterministic

programs but not without some expanses in the form of

execution time and memory overhead. If record and

replay technique is used for in-house debugging purpose

then moderate overhead can be acceptable but if this

technique is used for field failure debugging purpose then

even moderate overhead is unacceptable.

The major obstacle is to reduce the time and

memory overhead so that the technique can be used for

debugging of deployed software. These overheads are

mainly caused by recording huge volume of data during

capture phase in the field. It is obvious that to reduce

overhead less data should be recorded but recording less

data has another drawback. Due to the lack of sufficient

data execution may not be reproduced accurately. So to

reproduce execution accurately while maintaining the

acceptable level of time and memory overhead tradeoff is

required between the volume of data recorded and time

and memory efficiency.

Many capture and replay techniques have been

proposed previously but they all have their own

limitations. Content-based techniques [1, 2, 3, 4] record

events and data associated with those events during

capture phase and based on those recorded information

execution is reproduced during replay phase. This

approach generates huge volume of data causing huge

time and space overhead. Later this technique was

improved by recording only selective data. Another

approach for capture and replay technique is order-based

[6, 7, 11] in which only order of execution events are

recorded. Later based on that ordered events, execution is

reproduced in replay phase. Order-based approach is more

efficient but it has also drawback since slight change in

environment during replay phase can diverge the

execution path.

Though there are many capture and replay

techniques available for debugging of deployed software,

they have been hardly used by developers. One of the

main reason behind this, which we mentioned before, is

they are not efficient enough to be used in the deployed

software. Another reason is they are highly complex to

implement. We present a capture and replay technique to

reproduce crash in android applications. Our approach is

content-based in which only selective execution events

and data associated with those events which are necessary

to reproduce the crash are captured. Our technique is very

simple to implement and generate acceptable level of time

overhead to be used in the deployed applications. Our

technique efficiently reproduces crash in Android

application and effectively captures and replays GUI

related events. Preliminary experimental results show that

the technique can be used in the deployed applications.

The rest of the paper is organized as follows.

Section 2 introduces the background on android

applications and overview on existing related capture and

replay techniques. Section 3 presents the detailed

procedure of our capture and replay technique with

preliminary experimental results on section 4. Section 5

concludes the paper.

2. Background And Related Work

2.1 Android Fundamentals

Android [13] is a Linux based operating system primarily

designed for mobile devices. Android applications are

written in the Java programming language. Android

Software Development Kit (SDK) offers the tools

necessary to develop and debug applications on the

Android platform. By default every application runs in its

own Linux process and each process has its own Dalvik

virtual machine. Android starts the process when any of

the application's components need to be executed, then

shuts down the process when it is no longer needed or

when the system must recover memory for other

applications.

 Application components are the essential building

blocks of an Android application. There are four different

types of application components.

 Activities: An activity represents single screen with

which user can interact. An application generally consists

of several activities. Activities are independent of each

other but they may interact with each other to complete a

task. In an application one activity is specified as “main”

activity which is presented to the user when the

application is launched for the first time. Each activity can

then start another activity to perform different tasks. Each

activity in an android application is either a direct

subclass of the Activity base class or a subclass of an

Activity subclass. Activity’s lifecycle is managed by the

application framework. An application that presents

anything on the display must have at least one activity

responsible for that display.

 Services: A service is an application component which

performs long-running operations or works for remote

processes in the background. It does not provide user

interface. Another application component can start or bind

a service. If a service is started then it can run indefinitely

in the background and usually performs a single operation

without returning result to the caller however if a service

is bounded then it runs only as long as the service is

bounded to component. A bound service offers a client-

server interface that allows components to interact with

the service, send requests, get results, and even do so

across processes with inter process communication (IPC).

Services are implemented as a subclass of Service class.

 Content Providers: A content provider manages a

shared set of application data. It encapsulates data and

provides that to application. Through content provider

application can access the data from file, SQLite database,

web, or any other persistent storage location. Content

providers are also useful for manipulating data that is

private to the application. A content provider is

implemented as a subclass of ContentProvider.

 Broadcast Receivers: A broadcast receiver is a

component that responds to system-wide broadcast

announcements. It may originate from system (e.g. a

broadcast announcing that the screen has turned off, the

battery is low, or a picture was captured). Applications

can also initiate broadcast. A broadcast receiver is

implemented as a subclass of BroadcastReceiver.

2.2 Related Work

Though our technique is specifically tailored for android

applications, it is closely related to Java based capture and

replay technique jRapture [1]. jRapture captures

interactions between a Java application and the underlying

system by using modified Java API classes. During replay

phase, it presents each thread with exactly the same input

sequence it recorded during capture. The technique used

in capture phase in jRapture has some practical

limitations. Although Steven et. al mention that the fields

accessible to methods need to be captured, they are not

captured by implementing their technique [12]. Also in

[1] objects are captured by using serialization but for this

to happen class from which they are instantiated must

implement Serializable interface which is not always

possible.

 Another closely related technique is SCARPE [3]. It

is also a Java based capture and replay technique. The

technique identifies the boundaries of the observed set

based on the user-provided list of observed classes and

suitably modifies the application to capture interactions

between the observed set and rest of the system. It

overcomes the problem of object serialization by

generating an object ID which uniquely identifies a class

instance during capture phase and based on that object ID

it retrieves or creates the object during replay phase. On

average it imposes 30% - 50% time overhead which is

still high to be used in the deployed application. Also this

technique does not deal with GUI related events.

 Other techniques [6, 7, 9, 10, 11] focus mainly on

concurrent behavior of applications. Though similar in

approach their main purpose is to reproduce failures

caused by concurrency related events. In contrast to our

technique, these techniques capture different sets of

events. Table 1 shows the comparison of events captured

by our technique and other related techniques. Symbol √

denotes captured events whereas × denotes events which

are not captured.

Table 1. Comparison of events captured by our technique

and other related techniques.

 jRapture SCARPE ReCrash Our

Method

Signature
√ √ √ √

Parameters √ √ √ √

Returned

Value
√ √ √ √

Used Fields √ √ √ √

Exceptions √ √ √ √

Objects √
ID &

Type
√ Type

GUI Events √ × × √

3. Capture and Replay Technique

Though android applications are developed in Java

programming language, their organization is quite

different than other Java-based applications. Our

technique is specifically designed for android

applications, which has three major components Data

Collector, Checkpoint Detector, and Crash Detector as

shown in figure 1. Data Collector records the execution

events, Checkpoint Detector implements the checkpoint

technique, and Crash Detector detects the crash and

generates the log file. These components are described in

detail in section 3.2.

 Our technique has three main phases:

instrumentation, capture and replay. In instrumentation

phase the application is modified by inserting probes into

the source code before the application is deployed in the

field. During capture phase selected data from execution

of the deployed application is recorded and periodically

stored into a log file while in replay phase data from the

log file is provided as input to execution and the program

is replayed for debugging of field failures.

3.1 Instrumentation Phase

This section describes the overview of the instrumentation

technique. Our capture and replay technique uses AspectJ

[16, 17] for instrumentation. AspectJ is an implementation

of aspect-oriented programming for Java. Existing capture

and replay techniques introduce probe by instrumenting

directly in source code [2, 3, 7], modifying API [1] or

virtual machine [8, 9], and making changes in host

operating system [5, 14]. The instrumentation technique

which we are using introduces probe into code but it

separates the actual code from the instrumentation code

and also the instrumentation code can be reused in another

application. Code reusability is a huge advantage over

existing instrumentation techniques. With AspectJ it is

also possible to enable and disable the instrumentation

code whenever required.

Aspect-oriented programming provides three

main constructs which are join points, advice, and

pointcuts. Join points are specific points within the

application which developer would like to intercept for

example join when a method is called. The purpose for

which we are intercepting join points is defined in advice

section for example record signature of a method when

the method is called. The mechanism for declaring an

interest in a join point to initiate a piece of advice is

pointcut.

 Pointcuts not only intercept join points but also

expose part of the execution context at their join points.

Values exposed by a pointcut can be used in the body of

advice declarations. As our main goal of instrumentation

is to capture those values exposed by pointcut, AspectJ

serves the right purpose with additional advantage of code

reusability.

3.2 Capture Phase

Android Application

Activity Service Content
Provider

Broadcast
Receiver

Data

Collector

Crash
Detector

Checkpoint
Detector

On Application

Execution

Log
Events

Record

On startActivity()

Clear

Uncaught

 Exception

Record uncaught

 exception

Log

 File Generate

Figure 1. Overall structure of our system

The capture phase takes place when the deployed

application starts executing. The application must be

instrumented before it is deployed in the field. When the

application runs, the probes in the code suitably generates

events. The events and the data associated with those

events are stored in a list. During the execution if an un-

handled exception is thrown then the un-handled

exception along with the stored events of the list is

flushed into a log file. The log file is then sent to the

developer for replaying the execution.

3.2.1 Data Collector Component

For any application to crash it must change its state from

normal to crash state and this state transition should be

triggered by some events. Unless we know the behavior

of normal state and events which caused the transition it’s

impossible to reproduce crash state of the application.

Also it’s impossible to know, in advance, when the

application is going to crash so in our capture phase we

record behavior of each state of the application and the

events which triggered the transition.

A method call can change the state of the

application by changing the values of parameters, by

changing the values of used fields, or by returning a value

[1]. Our capture technique records method’s signature,

parameters, used fields, returned values, and any raised

exceptions. In case of graphical user interface an

additional value called resource ID is recorded. Figure 2

shows the AspectJ pointcuts which are used to capture

these events.

Pointcuts methodExec and methodCall

mentioned in figure 2 capture the method execution and

method call respectively. The methodCall pointcut is

invoked when the method is invoked and the context of

the advice invocation is the calling class whereas

methodExec pointcut is invoked once the method has

been entered and the calling context is the method being

executed. Detailed differences between these two types of

poincuts are described in [16, 17]. Figure 3 shows the

advices for methodCall and methodExec pointcuts.

Advices for methodCall and methodExec

pointcuts record method’s signature and parameters in an

array list named tracelog as shown in figure 3. In case of

methodExec pointcut an additional event resource ID is

captured. Figure 4 shows the advices for the pointcuts

dataAccessed, dataModified, and dataReturned.

Advices for pointcuts dataAccessed,

dataModified, and dataReturned shown in figure 4

respectively records accessed value, modified value, and

Figure 2. AspectJ pointcuts to capture events

Figure 3. Advices for methodExec and methodCall

pointcuts.

Figure 4. Advices for dataAccessed, dataModified

and dataReturned pointcuts.

returned value. Primitive data types such as boolean, int,

float, long, and string can be captured easily with limited

performance overhead but capturing objects require

serialization. Serializing objects substantially increases

the performance overhead. Serialization is a process to

convert a data structure or objects into a format which can

be stored so finally what we are interested in is primitive

data types. As long as we are recording values of

primitive data types which affect the objects we don’t

need to capture them.

Graphical user interface is an integral part of

Android application. In Android application an activity

represents a single screen or user interface. Elements of

user interface are built using View and ViewGroup which

are objects that draw something on the screen with which

user can interact. There are two ways to intercept events

generated from user interaction with the user interface

(UI). One way is to capture the events from the View

object with which user interacts and another way is to use

event listeners. Event listeners are collections of nested

interfaces of View class. In both cases callback methods

handle the events. These callback methods are called by

Android framework when the View to which the listener

has been registered is triggered by user interaction with

the application. In Android application every View object

is identified by a unique ID called resource ID. As shown

in figure 3, in our capture phase we record this resource

ID so that it can be identified in replay phase.

3.2.2 Checkpoint Detector Component

The target application might run for long period, in such

case huge amount of data will be logged in the file and the

size of the file will grow substantially. To reduce the size

our technique uses activity as a checkpoint because

activities are either independent or loosely-coupled with

other Android components. When an activity starts we

record events in the list and when another activity starts

we remove existing data from the list and again we start

recording events in the list. This checkpoint technique is

implemented by using pointcut and advice shown in

figure 5. Appropriate way would have been to record

events between start and end of an activity but in Android

system may terminate the activity so we don’t use this

technique since we are not recording system level call in

our technique.

There are two types of activities, one which

returns data and another which does not return. The

activity which starts returning activity depends on the

result of returning activity to perform some task. For

example we have one activity named “Play” to play a

song and another activity named “Display” to display a

list of songs. In this case Play activity starts Display

activity which returns a song and then Play activity plays

that song. Crash may be caused by dependency

relationship between returning and non-returning

activities so we only use non-returning activity as our

checkpoint.

When one activity starts another activity then the

first activity gets paused or stopped but still alive. When

the second activity finishes the first activity regains the

focus. Suppose application crashes after first activity

regains the focus then in the log file we have execution

events of second activity and execution events of first

activity after it regains focus. Execution events of first

activity before it starts second activity get lost due to our

checkpoint technique. To reproduce this crash we have to

start first activity which in turn starts second activity.

Since the execution events of first activity before it starts

the second activity have been lost crash may not be

reproduced. To overcome this problem we can record the

execution events of more than one activity before clearing

the event list. Suppose we would like to keep the

execution events of two activities then we simply place a

counter and increment that counter when AspectJ code

intercept startActivity() method each time. When the

counter becomes three then we clear the list and repeat the

process again. This technique increases the accuracy of

reproducing crash but also increases the size of log file.

Figure 5. Pointcut and advice for implementing

checkpoint technique.
Figure 6. Pointcuts and advices for recording caught

and uncaught exceptions.

3.2.3 Crash Detector Component

Our capture technique stores events and data associated

with those events in a list during application execution

and flush those data into a log file when the application

crashes by throwing unhandled exception. Figure 6 shows

the pointcuts and advices for recording both caught and

uncaught exceptions.

The pointcut myException shown in figure 6

exposes the join points where the exceptions are caught

by target applications and its advice records the caught

exception whereas the pointcut unCaught exposes method

execution join points and its advice records any uncaught

exception thrown by the application. After recording the

uncaught exception it flushes all the events stored in a list

into the log file.The major events of Data Collector,

Checkpoint Detector, and Crash Detector components are

shown in figure 7.

 In Android application there are four

components: activities, services, content providers, and

broadcast receivers. These components communicate with

each other by passing messages which are called intents.

Intents are delivered through method calls. Also one part

of a component interacts with another part of the

component through method calls. In our capture phase we

are recording all the events related to method calls so our

capture logic can reproduce the crash caused by any

components of android application. However in case of

service component our checkpoint technique may

influence the logic in reproducing crash

 Services are generally used to perform long-

running operations but our checkpoint technique is

designed to record execution events for short period to

reduce the size of log file. If crash is caused by long-

running interrelated events generated by service then it’s

impossible to reproduce the crash by using our capture

logic because it’s not feasible to record all those events in

our technique.

3.3 Replay Phase

In replay phase our technique uses the instrumented

version of the application and the log file generated

during capture phase for reproducing crash. Replay phase

takes place in-house so overhead is not an important

factor. Our technique only replays the part of the

execution which may have caused the deployed

application to crash.

 First log entry of the log file is the starting point in

replay phase. Due to our checkpoint technique the first

log entry is always an event which starts an activity. For

example first log entry is like void

SomeActivity.startActivity(Intent). It means that

SomeActivity has started the activity which we want to

replay. To know which activity is started by SomeActivity

we have to check second entry of log file. Second entry is

the argument of startActivity() method which is like Intent

{ flg=0x24000000 cmp=SomeActivity/.AnotherActivity }.

From this entry we know that SomeActivity has started

AnotherActivity. In this way all the events are replayed. In

the meantime if any output is generated by application

during replay phase then it should be matched with the

output generated during capture phase. If both outputs are

matching then we are heading in the right direction

otherwise there is some problem in reproducing

execution. GUI events are also replayed in similar manner

except resources in GUI are identified using resource ID

recorded during capture phase.

4. Preliminary Experimental Results

To assess the feasibility and effectiveness of our

technique, we performed preliminary evaluation in an

experimental environment. We used a proprietary android

application named KidsMusicLand which has 3457 lines

of code, 18 activities, and 21 classes as a test subject for

our preliminary experiment. Figure 8 shows the layout of

main activity of our test subject. The experiment was

performed on Intel Core i3 3.10GHz processor, 4 GB

RAM, Windows 7, Eclipse Indigo, Android 4.0.3, JDK

1.5, and AspectJ 1.6.12. In the viewpoints of accuracy and

efficiency we investigated following two research

questions

 RQ1: Can our technique reproduce crash

accurately?

In our test subject there was not any real crash so we

modified the application which caused the application to

crash. We modified the application in three different ways

which caused the application to crash by throwing

IndexOutOfBoundsException, IllegalArgumentException,

and NullPointerException. In all the cases we were able to

reproduce the crash accurately by using single activity in

our checkpoint technique. The sizes of the generated log

Figure 7. Main scenarios of our capture system

Data

Collector

Crash

Detector

Checkpoint

Detector

Execution

Android

Application

Record

startActivity()

Clear

Uncaught

Exception
Record

Uncaught

 Exception

Generate

Log

Events
Log

File

alt

files in three different cases were 2.45 KB, 6.41 KB, and

2.24 KB.

We were able to reproduce crashes by using single

activity in our checkpoint technique. This result may be

biased because we introduced the crashes in test subject.

In applications with real crash it may require to use more

than one activity in checkpoint technique to reproduce

crash..

 RQ2: Can our technique capture executions

efficiently?

To measure the efficiency we compared execution time of

the original and instrumented version of the application.

Measuring execution time of GUI application is difficult

because it is affected by user interaction with the

application. For this purpose we used debugging tool

called Dalvik Debug Monitor Server (DDMS) which

comes along with Android.

On average our technique imposed 4% - 11%

execution time overhead during capture phase. In few

cases it went as high as 55%. It is worth mentioning that

the execution overhead increases with increase in data

intensive work done by application. During capture phase

our technique store events in a list by converting the

events into string data type. Of all the execution time

overhead around 50% of the overhead is caused by data

type conversion. Figure 9 shows the comparison of

average execution time overhead imposed by our and

other related techniques.

5. Conclusion and Future Work

In this paper we presented a capture and replay technique

to reproduce crash in android application. Our technique

records the partial execution of deployed application

during capture phase and replays the recorded execution

in replay phase for debugging. Preliminary experimental

results show that the technique can be implemented in

deployed applications for reproducing crash. Our

approach is simple and easy to implement.

 In future we intend to perform experiment on

additional applications with real crash. Our technique

imposes 4% - 11% execution time overhead which is still

high for deployed applications so we intend to improve

the performance. At present our technique does not

reproduce the failure caused by concurrency related

events so we will extend our technique in this direction.

Acknowledgements

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education,

Science and Technology(2010-0010606), and the IT R&D

program of MKE/KEIT.[10041145, Self-Organized

Software-platform (SOS) for welfare devices]

References

[1] J. Steven, P. Chandra, B. Fleck, and A. Podgurski,

jRapture: A Capture/Replay Tool for Observation-Based

Testing, Proc. of the 2000 ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2000, 158–

167.

[2] Shay Artzi, Sunghun Kim, Michael D. Ernst,

ReCrash: Making Software Failures Reproducible by

Preserving Object States, Proc. of the 22nd European

conference on Object-Oriented Programming, 2008, 542-

565.

[3] S. Joshi and A. Orso, SCARPE: A Technique and

Tool for Selective Capture and Replay of Program

Executions, ICSM 2007, 2007, 234-243.

[4] J. Clause and A. Orso, A Technique for Enabling and

Supporting Debugging of Field Failures, Proc. of the 29th

International Conference on Software Engineering, 2007,

261-270.

[5] S. Narayanasamy, G. Pokam, B. Calder, BugNet:

Continuously Recording Program Execution for

Figure 9. Comparison of average execution time

overhead imposed by our and other related

techniques.

Figure 8. Layout of main activity of our test subject.

Deterministic Replay Debugging, Proc. of the 32nd

annual International Symposium on Computer

Architecture, 2005, 284-295.

[6] M. Roneee and K. De Bosschere, RecPlay: A Fully

Integrated Practical Record/Replay System, ACM

Transactions on Computer Systems, 17(2), May 1999,

133-152.

[7] T. J. LeBlanc and J. M. Mellor-Crummey, Debugging

parallel programs with Instant Replay, IEEE Transactions

on Computers, C-36(4), April 1987, 471–482.

[8] R. Konuru, H. Srinivasan, and J.-D. Choi,

Deterministic replay of distributed Java applications,

Proc. of the 14th IEEE International Symposium on

Parallel & Distributed Processing, May 2000, 219–228.

[9] J.-D. Choi, B. Alpern, T. Ngo, and M. Sridharan, A

perturbation free replay platform for cross-optimized

multithreaded applications, Proc. of the 15th International

Symposium on Parallel and Distributed Processing, April

2001.

[10] J.-D. Choi and H. Srinivasan, Deterministic replay of

Java multithreaded applications, ACM Sigmetrics

Symposium on Parallel and Distributed Tools, August

1998, 48–59.

[11] A. Georges, M. Christiaens, M. Ronsse, and K. De

Bosschere. JaRec: A portable record/replay environment

for multi-threaded Java applications, Software: Practice

and Experience, 34(6), May 2004, 523-547.

[12] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse,

T. Ghesquiere, K. De Bosschere. A Taxonomy of

Execution Replay Systems, International Conference on

Advances in Infrastructure for Electronic Business,

Education, Science, Medicine, and Mobile Technologies

on the Internet, 2003.

[13] Android Developers, http://developer.android.com.

[14] S. M. Srinivasan, S. Kandula, C. R. Andrews and Y.

Zhou. Flashback: A Lightweight Extension for Rollback

and Deterministic Replay for Software Debugging, Proc.

of the annual conference on USENIX Annual Technical

Conference, 2004, 3-3.

[15] Marcello Cinque. Enabling On-Line Dependability

Assessment of Android Smart Phones. Proc. of the

IEEE/IFIP 41st International Conference on Dependable

Systems and Networks Workshops, 2011, 286-291.

[16] Introduction to AspectJ.

http://www.eclipse.org/aspectj/doc/released/progguide/sta

rting-aspectj.html.

[17] Russell Miles. AspectJ Cookbook. Dec 2004.

