
1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

LETTER

A log-based testing approach for detecting faults caused by incorrect

assumptions about the environment
Sooyong Jeong†, Student Member, Ajay Kumar Jha†, Nonmember, Youngsul Shin†, Nonmember and Woo Jin Lee†*,

Nonmember

SUMMARY Embedded software developers assume the behavior of the

environment when specifications are not available. However, developers

may assume the behavior incorrectly, which may result in critical faults in

the system. Therefore, it is important to detect the faults caused by incorrect

assumptions. In this letter, we propose a log-based testing approach to

detect the faults. First, we create a UML behavioral model to represent the

assumed behavior of the environment, which is then transformed into a state

model. Next, we extract the actual behavior of the environment from a log,

which is then incorporated in the state model, resulting in a state model that

represents both assumed and actual behaviors. Existing testing techniques

based on the state model can be used to generate test cases from our state

model to detect faults.

Keywords: log-based testing, model-based development, incorrect

assumptions, fault detection

1. Introduction

Embedded software developers assume behaviors of the

environment when specifications are not available. However,

it is challenging for them to correctly assume every possible

behavior. The trivial behaviors that are not assumed or

assumed incorrectly may not severely impact the system.

However, if all the significant behaviors are not assumed

correctly, it can result in critical faults in the system,

eventually leading to system failure. There are several

notable cases of real-world critical software failures caused

by incorrect assumptions. For example, NASA’s Mars Polar

Lander was destroyed because the system incorrectly

identified vibrations, caused by the deployment of the

stowed legs, as a surface touchdown.

 There are various reasons for making incorrect

assumptions. For example, the environment is so complex

that unexpected behaviors may arise [1]. Furthermore,

embedded system developers may overlook unexpected

behaviors [2]. The aforementioned reasons indicate that

making incorrect assumptions or missing to make some

assumptions is inevitable. Therefore, testing embedded

software system depending only on developers’ assumption

is insufficient to detect faults.

To solve the problem of assuming behavior incorrectly

or forgetting to assume some behavior, we propose a log-

based testing approach, which not only considers developers’

assumptions while testing the system but also takes account

of the actual behavior of the environment. Our main goal is

to develop a testing technique that can take account of the

actual behavior of the environment in addition to developers’

assumptions. To realize the goal, we use a combination of

model-based and log-based approach that can detect faults

caused by incorrect assumptions.

 The remainder of this letter is organized as follows.

Section 2 describes our testing approach to detect faults

caused by incorrect assumptions. Section 3 presents

preliminary experimental results and Section 4 concludes

the letter.

2. A log-based testing approach

Developers’ assumptions about the environment can be

represented in various formats. Currently, the environment

model [3, 4] is the most popular model. It is used to represent

not only the environment but also the entire embedded

software system. However, the environment model is

created manually [5, 6], which is a cumbersome task.

Furthermore, the model is not suitable for our approach,

which requires adjustment of the model according to the

actual behavior of the environment represented in the log. In

our approach, we use the UML behavioral model [7] to

represent the environment. The behavioral model is

transformed into another state model named base model,

which is flexible enough to represent the actual environment

from the log.

2.1 Base model extraction from the behavioral model

The base model is extracted from the existing UML

behavioral model created by developers. The extraction is

possible because UML is the de-facto standard for model-

based development, which provides a range of modeling

artifacts required to develop an embedded system [8], and it

has the potential to be applied to complex systems such as

real-time systems [9]. In the model-based development,

developers insert their assumptions of the environment

implicitly when they do the modeling of the embedded

software.

 Figure 1 shows an overview of the base model

extraction approach. First, we mask all the environment

components except one in the behavioral model to generate

a masked model for the environment component. Then, we

use the masked model to generate a state model for the

†The author is with Kyungpook National University, Buk-gu,
Daegu, 41566 South Korea.
*Corresponding Author

IEICE Trans. Inf.& Syst.., VOL.XX-X, NO.X XXXX XXXX

2

environment component. We repeat the procedure until state

models for all the environment components are generated.

The process results in a set of state models, which is a base

model of the environment.

Figure 1 The overview of base model extraction

 There are two major activities in transforming the UML

behavioral model into a base model. One of the key activities

is the masking process. The main purpose of the masking

process is to represent developers' assumptions for the

behavior of an individual environment component rather

than representing the behavior of all the environment

components. It helps to simplify the behavioral model

drastically.

 Masking is achieved by removing guard conditions that

are irrelevant to an individual environment component. By

traversing each transition in the behavioral model, we detect

the guard conditions that are irrelevant to the environment

component. If a transition has a guard condition that

includes only irrelevant environment components, we

remove the guard condition and identify the transition as a

λ-transition. However, a guard condition may have a

combination of the environment component for which we

are masking and other irrelevant environment components.

In such cases, we only remove irrelevant environment

components from the guard condition. Figure 2 shows an

example of the masking process. Given the behavioral

model for the environment components ‘a’ and ‘b’ as shown

in Figure 2(a), the masked model for the environment

component ‘a’ is shown in Figure 2(b). The guard condition

'a>30 & b>0' is masked to 'a>30' and the guard condition

'b>0' is masked to 'λ'.

Another key activity in transforming the behavioral

model into a base model is to generate state models from the

masked models. We use two different features of the masked

model to generate state models for each environment

component. The first feature is the values of an environment

component present in the guard conditions. We use the

values to represent the states of the environment component.

For example, as shown in Figure 2(b), the environment

component ‘a’ has four different values in the masked model

such as 'a<=30', 'a>30', '30<a<=50', and 'a>50'. Therefore,

the environment component ‘a’ can be represented by four

different states. However, some of the values are

overlapping. For example, the value 'a>30' can be subsumed

by the values '30<a<=50 and a>50'. Therefore, we merge the

overlapping values before representing the states for the

environment component ‘a’ as shown in Figure 3.

Figure 2 Masking the behavioral model for an environment component

Figure 3 Generating states of environment component from the masked

model for state component.

 After generating states from the values of the guard

conditions, we use the transitions of the masked model to

generate transitions between the states to complete a state

model for an environment component. For example, the

masked model shown in Figure 2(b) has a path 'q1-q3-q0’.

The state q3 can be reached from the state q1 via '30<a<=50',

and the state q0 can be reached from the state q3 via 'a<=30'.

Therefore, we can connect the state S2 representing

'30<a<=50' and the state S1 representing 'a<=30' with a

transition 'S2→S1' in our state model. In this way, we repeat

the transition generation for each path in the masked model

to get a state model for the environment component as

shown in Figure 4.

Figure 4 An example of the base model for an environment component

 We repeat the process of masking the behavioral model

and converting a masked model to a state model for each

environment component. Finally, we combine the state

models of each environment component to get the base

model, which includes the assumptions for each

environment component.

IEICE Trans. Inf.& Syst.

3

2.2 Adjusting base model to reflect behavior from the log

We extracted a base model from the behavioral model,

which represents developers’ assumptions about the

behavior of the environment. If we do the black-box testing

using the base model at this stage, it may not detect the faults

caused by unexpected behaviors that are not assumed by

developers. However, we intend to detect faults caused by

unexpected behaviors too. Therefore, we adjust the base

model to include the actual behavior from the log, resulting

in a base model that includes not only the assumed behaviors

but also the actual behaviors. In this section, we further

explain the process of incorporating actual behaviors from

the log in the base model.

 The first step is to collect a log that contains the actual

behavior of the environment. It is important that we collect

the log before the implementation of the system under test

(SUT). Therefore, we use the existing systems that work

under the same environment as SUT to collect the log. For

example, if we need to test a control software for a new

model of an air conditioner, we need data of the outdoor

temperature. In such a case, we can collect the data using the

old model of an air conditioner or we can simply use the

temperature sensor module to collect the data.

 The second step is to convert the collected data to a

discrete form. The environment exists continuously.

Therefore, the data representing the actual behavior of the

environment in the log will be in continuous form. However,

the base model does not take data in a continuous form.

Therefore, we have to convert the data to a discrete form. In

our approach, we use the sampling technique [10] to convert

the continuous data to a discrete form. We determine the

sampling rate based on the characteristics of the SUT. If the

interface of the SUT receives the input for a fixed period, the

sampling rate will be the same as the specified period. On

the contrary, if the interface of the SUT is an interrupt-driven,

the sampling rate will be the maximum of the polling rate of

the interface. In addition to these techniques, we can utilize

the signal processing of the discrete log to get extra

information about the environment components [10]. For

example, autoregressive model (AR) and moving average

model (MA) may provide extra characteristics of the

environment components that are not expressed in raw log

data.

 The third step is to incorporate the sampled log data in

the base model to detect the unexpected behavior of the

environment component that is either not assumed by

developers' or assumed incorrectly. To achieve the goal, we

analyze the sampled log data. If a value in the log

representing the environment component matches a state of

the base model for the environment component, a pair of two

sequential values representing the same environment

component is retrieved from the log and matched with a

transition of the base model. If the retrieved transition does

not exist in the base model, we regard the transition as

unexpected behavior of the environment component and we

insert the transition in the base model. To distinguish the

modified model from the base model, we call it log-adjusted

model. We repeat the process for each environment

component and get the environment model representing

both assumed and actual behavior as shown in Figure 5.

Figure 5 The log adjusting for the base model

3. Evaluation

To evaluate the effectiveness of our approach in detecting

faults caused by incorrect assumptions, we conducted an

experiment with an Android application named Gyroscope

Explorer. In our experiment, we used the 1.5.1 version of the

application [11]. As shown in Figure 6, it visualizes the

rotation of an Android device using a gyroscope sensor.

However, this version of the application has a fault, which

crashes the application if the device is rotated to a specific

position. The fault was caused by an incorrect assumption

that the device will not be rotated to the specified position.

Figure 6 the screenshot of Gyroscope Explorer application

As shown in Figure 6, the white color in the circle

represents the Y-axis rotation. We extracted the implicit

assumptions by analyzing the source code of Gyroscope

Explorer. We presumed the state model for the system from

the source code, which is then converted to a base model for

Y-axis rotation as shown in Figure 7(a). The base model

shows that the developer did not assume the value of Y-axis

rotation over 1.25 radian. To adjust the base model, we

collected logs of a gyroscope, under the circumstances that

IEICE Trans. Inf.& Syst.., VOL.XX-X, NO.X XXXX XXXX

4

can be occurred in real life, by using Galaxy S9+

smartphone and AndroSensor [13]. Since Gyroscope

Explorer updates the visualization on an interval of 100 ms,

the collected logs were sampled to 19,034 items with a

sampling rate of 100 ms. The sampled logs were used for

adjusting the base model as shown in Figure 7(b), resulting

in a log-adjusted model with additional transitions about the

Y-axis rotation.

Figure 7 The base model and log-adjusted model for Y-axis rotation.

In this experiment, we generated test cases from both the

base model and the log-adjusted model using ATSA (All

transition state algorithm) [14]. The base model generated

total 9 test cases {(a, b), (a, c), (c, b), (b, c), (c, a), and so on}

and the log-adjusted model generated 10 additional test

cases {(a, f), (b, f), (c, f), (f, f), and so on}. To execute the

test cases, we converted the state conditions in each state

with real values that satisfy the conditions. Then, we

executed Gyroscope Explorer by feeding the real values of

the Y-axis rotation through sensor listener using Galaxy S9+

smartphone. We executed test cases of both the base model

and the log-adjusted model and checked whether the fault

was detected. The test cases involving (a, f), (b, f), and (c, f)

transitions in the log-adjusted model were able to detect the

fault. The exception traces of the crash caused by the fault is

shown in Figure 8.

Figure 8 the exception traces of the crash for the fault

4. Conclusion

This letter proposed a model-based and log-based testing

approach for detecting faults caused by incorrect

assumptions. To evaluate the effectiveness of our approach

in detecting faults caused by incorrect assumptions, we

performed a preliminary experiment using an open-source

Android application. The result of the experiment shows that

the proposed approach is effective in detecting faults caused

by incorrect assumption.

Acknowledgments

This research was supported by the Basic Science Research

Program through the National Research Foundation of

Korea funded by the Ministry of Education (NRF-

2017R1D1A3B04035880 and NRF-

2018R1A6A1A03025109).

References

[1] C. Ebert, C. Jones, “Embedded software: Facts, figures, and future,”

Computer, vol.42, no.4, pp.42-52, June 2009.

[2] Y. Shinyashiki, T. Mise, M. Hashimoto, K. Katamine, N. Ubayashi, T.

Nakatani, “Enhancing the ESIM (Embedded Systems Improving

Method) by Combining Information Flow Diagram with Analysis

Matrix for Efficient Analysis of Unexpected Obstacles in Embedded

Software,” Proc. 14th APSEC, Nagoya, Japan, pp.327-333, Dec.

2007.

[3] K. D. Müller-Glaser, G. Friek, E. Sax, M. K Kühl, “Multiparadigm

Modeling in Embedded Systems Design,” IEEE Trans. Contr. Syst.

T., vol.12, no.2, March 2004.

[4] G. Karsai, S. Neema, D. Sharp, “Model-driven architecture for

embedded software:A synopsis and an example”, Sci. Comput.

Program., vol.73, no.1, pp.26-38, June 2008.

[5] F. Siavashi, D. Truscan, “Environment Modeling in Model-Based

Testing: Concepts, Prospects and Research Challenges,” In Proc. of

the 19th International Conference on Evaluation and Assessment in

Software Engineering, pp.30-35, Nanjing, China, April 2015.

[6] M. Z. Iqbal, A. Arcuri, L. Briand, “Environment modeling and

simulation for automated testing of soft real-time embedded

software,” Softw. Syst. Model, vol.14, no.1 pp.483-524, Feb. 2015.

[7] OMG Unified Modeling Language Specification,

“https://www.omg.org/spec/UML/2.5.1/PDF”, accessed Jul. 3. 2019.

[8] T. Schattkowsky, W. Müller, “Model-Based Design of Embedded

Systems,” In Seventh IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, Vienna, Austria, pp.

113-128, May 2004.

[9] M. U. Khan, K. Geihs, F. Gutbrodt, P. Gohner, and R. Trauter. "Model-

driven development of real-time systems with UML 2.0 and C." In

Fourth Workshop on Model-Based Development of Computer-Based

Systems and Third International Workshop on Model-Based

Methodologies for Pervasive and Embedded Software (MBD-

MOMPES'06). IEEE, 2006.

[10] A. V. Oppenheim, R. W. Schaffer, “Discrete-Time Signal Processing,”

Pearson, London, 2009.

[11] Gyroscope Explorer / Commit [4359bd]

https://github.com/KalebKE/GyroscopeExplorer/commit/4359bd54

d0022cc7f5049ed9f06c1d0a636bbf06, accessed Jul. 29. 2019.

[12] SensorManager | Android Developers,

https://developer.android.com/reference/android/hardware/SensorM

anager.html, accessed Jul. 25. 2019.

[13] AndroSensor, http://www.fivasim.com/androsensor.html, accessed

Aug. 2. 2019.

[14] S. Pradhan, M. Ray and S. K. Swain, Transition coverage based test

case generation from state chart diagram, Journal of King Saud

University – Computer and Information Sciences, 2019.

DOI:10.1016/j.jksuci.2019.05.005

https://www.omg.org/spec/UML/2.5.1/PDF
https://github.com/KalebKE/GyroscopeExplorer/commit/4359bd54d0022cc7f5049ed9f06c1d0a636bbf06
https://github.com/KalebKE/GyroscopeExplorer/commit/4359bd54d0022cc7f5049ed9f06c1d0a636bbf06
https://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/reference/android/hardware/SensorManager.html
http://www.fivasim.com/androsensor.html

