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LETTER 

A log-based testing approach for detecting faults caused by incorrect 

assumptions about the environment 
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SUMMARY Embedded software developers assume the behavior of the 

environment when specifications are not available. However, developers 

may assume the behavior incorrectly, which may result in critical faults in 

the system. Therefore, it is important to detect the faults caused by incorrect 

assumptions. In this letter, we propose a log-based testing approach to 

detect the faults. First, we create a UML behavioral model to represent the 

assumed behavior of the environment, which is then transformed into a state 

model. Next, we extract the actual behavior of the environment from a log, 

which is then incorporated in the state model, resulting in a state model that 

represents both assumed and actual behaviors. Existing testing techniques 

based on the state model can be used to generate test cases from our state 

model to detect faults. 
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1. Introduction 

Embedded software developers assume behaviors of the 

environment when specifications are not available. However, 

it is challenging for them to correctly assume every possible 

behavior. The trivial behaviors that are not assumed or 

assumed incorrectly may not severely impact the system. 

However, if all the significant behaviors are not assumed 

correctly, it can result in critical faults in the system, 

eventually leading to system failure. There are several 

notable cases of real-world critical software failures caused 

by incorrect assumptions. For example, NASA’s Mars Polar 

Lander was destroyed because the system incorrectly 

identified vibrations, caused by the deployment of the 

stowed legs, as a surface touchdown. 

 There are various reasons for making incorrect 

assumptions. For example, the environment is so complex 

that unexpected behaviors may arise [1]. Furthermore, 

embedded system developers may overlook unexpected 

behaviors [2]. The aforementioned reasons indicate that 

making incorrect assumptions or missing to make some 

assumptions is inevitable. Therefore, testing embedded 

software system depending only on developers’ assumption 

is insufficient to detect faults.  

To solve the problem of assuming behavior incorrectly 

or forgetting to assume some behavior, we propose a log-

based testing approach, which not only considers developers’ 

assumptions while testing the system but also takes account 

of the actual behavior of the environment. Our main goal is 

to develop a testing technique that can take account of the 

actual behavior of the environment in addition to developers’ 

assumptions. To realize the goal, we use a combination of 

model-based and log-based approach that can detect faults 

caused by incorrect assumptions. 

 The remainder of this letter is organized as follows. 

Section 2 describes our testing approach to detect faults 

caused by incorrect assumptions. Section 3 presents 

preliminary experimental results and Section 4 concludes 

the letter. 

2. A log-based testing approach 

Developers’ assumptions about the environment can be 

represented in various formats. Currently, the environment 

model [3, 4] is the most popular model. It is used to represent 

not only the environment but also the entire embedded 

software system. However, the environment model is 

created manually [5, 6], which is a cumbersome task. 

Furthermore, the model is not suitable for our approach, 

which requires adjustment of the model according to the 

actual behavior of the environment represented in the log. In 

our approach, we use the UML behavioral model [7] to 

represent the environment. The behavioral model is 

transformed into another state model named base model, 

which is flexible enough to represent the actual environment 

from the log. 

2.1 Base model extraction from the behavioral model 

The base model is extracted from the existing UML 

behavioral model created by developers. The extraction is 

possible because UML is the de-facto standard for model-

based development, which provides a range of modeling 

artifacts required to develop an embedded system [8], and it 

has the potential to be applied to complex systems such as 

real-time systems [9]. In the model-based development, 

developers insert their assumptions of the environment 

implicitly when they do the modeling of the embedded 

software. 

 Figure 1 shows an overview of the base model 

extraction approach. First, we mask all the environment 

components except one in the behavioral model to generate 

a masked model for the environment component. Then, we 

use the masked model to generate a state model for the 
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environment component. We repeat the procedure until state 

models for all the environment components are generated. 

The process results in a set of state models, which is a base 

model of the environment. 

Figure 1 The overview of base model extraction 

 There are two major activities in transforming the UML 

behavioral model into a base model. One of the key activities 

is the masking process. The main purpose of the masking 

process is to represent developers' assumptions for the 

behavior of an individual environment component rather 

than representing the behavior of all the environment 

components. It helps to simplify the behavioral model 

drastically. 

 Masking is achieved by removing guard conditions that 

are irrelevant to an individual environment component. By 

traversing each transition in the behavioral model, we detect 

the guard conditions that are irrelevant to the environment 

component. If a transition has a guard condition that 

includes only irrelevant environment components, we 

remove the guard condition and identify the transition as a 

λ-transition. However, a guard condition may have a 

combination of the environment component for which we 

are masking and other irrelevant environment components. 

In such cases, we only remove irrelevant environment 

components from the guard condition. Figure 2 shows an 

example of the masking process. Given the behavioral 

model for the environment components ‘a’ and ‘b’ as shown 

in Figure 2(a), the masked model for the environment 

component ‘a’ is shown in Figure 2(b). The guard condition 

'a>30 & b>0' is masked to 'a>30' and the guard condition 

'b>0' is masked to 'λ'. 

Another key activity in transforming the behavioral 

model into a base model is to generate state models from the 

masked models. We use two different features of the masked 

model to generate state models for each environment 

component. The first feature is the values of an environment 

component present in the guard conditions. We use the 

values to represent the states of the environment component. 

For example, as shown in Figure 2(b), the environment 

component ‘a’ has four different values in the masked model 

such as 'a<=30', 'a>30', '30<a<=50', and 'a>50'. Therefore, 

the environment component ‘a’ can be represented by four 

different states. However, some of the values are 

overlapping. For example, the value 'a>30' can be subsumed 

by the values '30<a<=50 and a>50'. Therefore, we merge the 

overlapping values before representing the states for the 

environment component ‘a’ as shown in Figure 3. 

 
Figure 2 Masking the behavioral model for an environment component 

 

 
Figure 3 Generating states of environment component from the masked 

model for state component. 

 After generating states from the values of the guard 

conditions, we use the transitions of the masked model to 

generate transitions between the states to complete a state 

model for an environment component. For example, the 

masked model shown in Figure 2(b) has a path 'q1-q3-q0’. 

The state q3 can be reached from the state q1 via '30<a<=50', 

and the state q0 can be reached from the state q3 via 'a<=30'. 

Therefore, we can connect the state S2 representing 

'30<a<=50' and the state S1 representing 'a<=30' with a 

transition 'S2→S1' in our state model. In this way, we repeat 

the transition generation for each path in the masked model 

to get a state model for the environment component as 

shown in Figure 4.  

 
Figure 4 An example of the base model for an environment component 

 We repeat the process of masking the behavioral model 

and converting a masked model to a state model for each 

environment component. Finally, we combine the state 

models of each environment component to get the base 

model, which includes the assumptions for each 

environment component. 
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2.2 Adjusting base model to reflect behavior from the log 

We extracted a base model from the behavioral model, 

which represents developers’ assumptions about the 

behavior of the environment. If we do the black-box testing 

using the base model at this stage, it may not detect the faults 

caused by unexpected behaviors that are not assumed by 

developers. However, we intend to detect faults caused by 

unexpected behaviors too. Therefore, we adjust the base 

model to include the actual behavior from the log, resulting 

in a base model that includes not only the assumed behaviors 

but also the actual behaviors. In this section, we further 

explain the process of incorporating actual behaviors from 

the log in the base model. 

 The first step is to collect a log that contains the actual 

behavior of the environment. It is important that we collect 

the log before the implementation of the system under test 

(SUT). Therefore, we use the existing systems that work 

under the same environment as SUT to collect the log. For 

example, if we need to test a control software for a new 

model of an air conditioner, we need data of the outdoor 

temperature. In such a case, we can collect the data using the 

old model of an air conditioner or we can simply use the 

temperature sensor module to collect the data.  

 The second step is to convert the collected data to a 

discrete form. The environment exists continuously. 

Therefore, the data representing the actual behavior of the 

environment in the log will be in continuous form. However, 

the base model does not take data in a continuous form. 

Therefore, we have to convert the data to a discrete form. In 

our approach, we use the sampling technique [10] to convert 

the continuous data to a discrete form. We determine the 

sampling rate based on the characteristics of the SUT. If the 

interface of the SUT receives the input for a fixed period, the 

sampling rate will be the same as the specified period. On 

the contrary, if the interface of the SUT is an interrupt-driven, 

the sampling rate will be the maximum of the polling rate of 

the interface. In addition to these techniques, we can utilize 

the signal processing of the discrete log to get extra 

information about the environment components [10]. For 

example, autoregressive model (AR) and moving average 

model (MA) may provide extra characteristics of the 

environment components that are not expressed in raw log 

data. 

 The third step is to incorporate the sampled log data in 

the base model to detect the unexpected behavior of the 

environment component that is either not assumed by 

developers' or assumed incorrectly. To achieve the goal, we 

analyze the sampled log data. If a value in the log 

representing the environment component matches a state of 

the base model for the environment component, a pair of two 

sequential values representing the same environment 

component is retrieved from the log and matched with a 

transition of the base model. If the retrieved transition does 

not exist in the base model, we regard the transition as 

unexpected behavior of the environment component and we 

insert the transition in the base model. To distinguish the 

modified model from the base model, we call it log-adjusted 

model. We repeat the process for each environment 

component and get the environment model representing 

both assumed and actual behavior as shown in Figure 5.  

 

Figure 5 The log adjusting for the base model 

3. Evaluation 

To evaluate the effectiveness of our approach in detecting 

faults caused by incorrect assumptions, we conducted an 

experiment with an Android application named Gyroscope 

Explorer. In our experiment, we used the 1.5.1 version of the 

application [11]. As shown in Figure 6, it visualizes the 

rotation of an Android device using a gyroscope sensor. 

However, this version of the application has a fault, which 

crashes the application if the device is rotated to a specific 

position. The fault was caused by an incorrect assumption 

that the device will not be rotated to the specified position. 

 
Figure 6 the screenshot of Gyroscope Explorer application 

As shown in Figure 6, the white color in the circle 

represents the Y-axis rotation. We extracted the implicit 

assumptions by analyzing the source code of Gyroscope 

Explorer. We presumed the state model for the system from 

the source code, which is then converted to a base model for 

Y-axis rotation as shown in Figure 7(a). The base model 

shows that the developer did not assume the value of Y-axis 

rotation over 1.25 radian. To adjust the base model, we 

collected logs of a gyroscope, under the circumstances that 
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can be occurred in real life, by using Galaxy S9+ 

smartphone and AndroSensor [13]. Since Gyroscope 

Explorer updates the visualization on an interval of 100 ms, 

the collected logs were sampled to 19,034 items with a 

sampling rate of 100 ms. The sampled logs were used for 

adjusting the base model as shown in Figure 7(b), resulting 

in a log-adjusted model with additional transitions about the 

Y-axis rotation.  

Figure 7 The base model and log-adjusted model for Y-axis rotation. 

In this experiment, we generated test cases from both the 

base model and the log-adjusted model using ATSA (All 

transition state algorithm) [14]. The base model generated 

total 9 test cases {(a, b), (a, c), (c, b), (b, c), (c, a), and so on} 

and the log-adjusted model generated 10 additional test 

cases {(a, f), (b, f), (c, f), (f, f), and so on}. To execute the 

test cases, we converted the state conditions in each state 

with real values that satisfy the conditions. Then, we 

executed Gyroscope Explorer by feeding the real values of 

the Y-axis rotation through sensor listener using Galaxy S9+ 

smartphone. We executed test cases of both the base model 

and the log-adjusted model and checked whether the fault 

was detected. The test cases involving (a, f), (b, f), and (c, f) 

transitions in the log-adjusted model were able to detect the 

fault. The exception traces of the crash caused by the fault is 

shown in Figure 8. 

 
Figure 8 the exception traces of the crash for the fault 

4. Conclusion 

This letter proposed a model-based and log-based testing 

approach for detecting faults caused by incorrect 

assumptions. To evaluate the effectiveness of our approach 

in detecting faults caused by incorrect assumptions, we 

performed a preliminary experiment using an open-source 

Android application. The result of the experiment shows that 

the proposed approach is effective in detecting faults caused 

by incorrect assumption. 
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