
An empirical study of collaborative model and its security risk in Android 

 

Ajay Kumar Jha and Woo Jin Lee 

School of Computer Science and Engineering, Kyungpook National University 

Daegu, Republic of Korea 

ajaykjha123@yahoo.com, woojin@knu.ac.kr 

 

 

 

Abstract: Android provides a framework for the development of collaborative applications, which is considered as 

one of the reasons behind its success. Collaborative model provides flexibility to an application in utilizing services 

offered by other applications. This approach offers several advantages to developers, such as allowing them to dedicate 

all of their resources in developing only core functionalities of an application while leveraging services offered by 

other applications for its auxiliary functionalities. However, the collaborative model also has some disadvantages, 

such as opening of attack surfaces in an application during exposure of some of its components as it offers its services. 

Malicious actions can be performed through the exposed components of the application. Android provides permission-

based security to protect the exposed components. However, developers must implement the security correctly. In this 

paper, we empirically evaluate the scale of the collaborative model adopted by Android applications. We also 

investigate various methods to achieve collaboration among applications. Furthermore, we evaluate the scale of 

security risk instigated by the collaborative model and perform several other empirical studies on 13,944 Android 

applications. 

 

Keywords: Android applications, inter-application communications, collaborative application model, permission-

based security, security risk assessment 

 

1. Introduction  

Android operating system, which currently holds the largest market share [1], is one of the major players in the 

smartphone industry. Although open source is considered as the main reason behind its remarkable success, it can also 

be attributed to the incentives available for each stakeholder including developers. Developers can develop Android 

applications on multiple platforms. Most importantly, they can utilize the collaborative framework during application 

development. Android application developers can also utilize large number of APIs provided by the platform. These 

incentives not only facilitate but also encourage an individual developer to develop and publish applications in the 

market, which is evident as Google Play Store has overtaken other application stores based on the number of available 

applications, although it generates less revenue for developers than its main rival, the iOS App Store [2]. The 

framework for developing collaborative applications is a unique feature of Android and it is considered as one of the 

key elements behind Android success. 

Collaborative model is not a new approach. Android only brought this approach into application development 

practice, which cannot be considered as a trivial step, but rather as a paradigm shift in the way applications collaborate. 

Some forms of collaboration exist among traditional software. For example, plug-ins are developed to collaborate 

with the target software. Android brought this traditional approach to a new height. Unlike traditional software where 

plug-ins act only as supplementary, an Android application that offers services to other applications can also perform 

its own tasks. For example, a camera application performs its own tasks as well as offers services to other applications. 

Other applications can easily utilize the services offered by the camera application. This seamless collaboration 

between applications is a unique feature of Android. The collaborative approach provides several advantages to 

developers, such as allowing them to focus on an application’s core functionalities while leveraging services offered 



by other applications for its accessory functionalities, which increases the quality of the application and decreases the 

development time, resulting in less development cost and competitive advantage in the market. 

Along with several advantages, the collaborative approach has some disadvantages. Android applications are 

composed of components. An application offers its services by exposing one or more of its components, which opens 

attack surfaces [8, 11]. These attack surfaces can be easily exploited by malicious applications. Android provides 

protection against these attack surfaces at various places. Applications are vetted for malicious behavior when they 

are installed into Google Play Store [27]. The procedure prohibits malicious applications from entering the store and 

collaborating with benign applications. Given that the vetting procedure is not 100% effective [28], some malicious 

applications may enter into the store. The presence of malicious applications in the store has been reported 

occasionally [29, 30]. Third party stores are other but major source of malicious applications [31] against which 

Google provides a verification process [32]. However, the process is optional for users. Android also provides 

permission-based security at the application level to protect the attack surfaces. However, developers must implement 

the security correctly. Several studies have indicated that developers fail to implement the collaborative model and its 

security correctly. A common developer’s mistake in Android is to expose a component unintentionally [3], which 

leaves it unprotected. Developers may fail to implement protection mechanisms correctly because most of the 

developers are not security experts [4, 5].   

In this paper, we empirically evaluate the scale of the collaborative model adopted by Android applications. The 

evaluation results can shed light on some important points. If the collaborative model has been adopted in large scale, 

then it can be concluded that the collaborative model has succeeded and it is contributing to the success of Android. 

The success of the collaborative model in Android may also open doors for collaborative applications or software on 

other platforms. Meanwhile, small-scale adoption indicates that the collaborative model has failed and it does not 

contribute to the success of Android. We also empirically evaluate the security risk instigated by the collaborative 

model. If the collaborative model has been adopted in large scale and the empirical study indicates that most of the 

exposed components are protected, then it can be concluded that the collaborative model does not pose significant 

security risk. Meanwhile, a large-scale collaborative model with a large number of unprotected exposed components 

indicates that either the developers are unaware of the security risk associated with the exposed components or they 

are implementing the security incorrectly. In either case, the collaborative model poses high security risk, which may 

affect its further development in Android or other platforms. Furthermore, we investigate the common security, 

reliability, and availability issues associated with the collaborative model and perform empirical studies on 13,944 

free Android applications downloaded from the Google Play Store.  

The main objective of this study is to investigate the collaboration among Android applications and the security 

risk instigated by the collaborative approach. In this direction, the contributions of this paper can be summarized as 

follows: 

 Performs empirical studies on 13,944 popular Android applications. 

 Assesses the scale of collaboration among Android applications and reports on different collaboration approaches 

involving the participation of different types of components. 

 Evaluates the security risk in the collaborative approach by analyzing unprotected components and sensitive 

resources used by the applications. 

 Identifies incorrect implementations of the collaborative model and its security and discusses their implications.  

The rest of the paper is organized as follows. Section 2 describes the background on the collaborative model in 

Android and its security. Related works are discussed in Section 3. Several empirical studies converging toward the 

collaborative model and its security risk are performed in Section 4. We also discussed the incorrect implementations 

of the collaborative model and its security along with their implications in Section 4. The results obtained from the 

empirical studies are discussed in Section 5. Threats to the correctness of the obtained empirical results are discussed 

in Section 6. Finally, the paper concludes in Section 7. 

2. Collaborative model and its security 



Android applications comprise four kinds of components: activity, service, broadcast receiver, and content 

provider. In an application, a component can complete a task independently. However, components may interact with 

each other to complete the task. Furthermore, the components of an application can also communicate with the 

components of other applications. For example, a user may need to attach an image in an email. In this case, an email 

application may communicate with a camera application to obtain the image. This kind of collaboration among 

applications is a unique feature of Android, which can be described in terms of a client-server architecture. In a 

collaboration event, an application that offers services acts as a server whereas an application that avails the services 

acts as a client. Unlike the client-server architecture, Android applications are neither clients nor servers exclusively. 

In the example, the email application acts as a client whereas the camera application acts as a server for the event. 

However, the condition may reverse in another event. For example, a user captures an image through a camera 

application, and then sends the image through an email application. In this collaboration, the camera application acts 

as a client whereas the email application acts as a server.  

The collaboration in Android is achieved through intents and intent filters [6]. An intent describes an operation 

to be performed by a component. Depending on the presence or absence of a target component, an intent is categorized 

as either explicit or implicit. An explicit intent is directly addressed by a target component whereas a target component 

for an implicit intent is resolved by the system. Intent filters play a crucial role in the target resolution process. A 

component advertises its capability to handle a specific operation through an intent filter, which is registered in the 

system. If an implicit intent requests for a target component, then the system matches the operation to be performed 

by the intent with the operation advertised by the components. The component with the matching operation is served 

as a target component for the intent. Although collaboration can be achieved through an explicit intent, it requires 

prior knowledge of the target application, which results in some restrictions on the collaboration. Meanwhile, the 

collaboration achieved through an implicit intent does not impose these restrictions. In this form of collaboration, the 

collaborating applications do not have knowledge of each other. An application advertises its services through intent 

filters, and any other application can avail those services if they satisfy the security condition imposed by the service 

provider application. 

The collaborative model and its security are implemented in Android through a manifest file, which is a 

configuration file where all components of an application must be declared. However, the broadcast receiver 

components can also be declared in the source code. An application willing to offer services to other applications must 

be declared through the manifest file. Given that services are offered through one or more components of an 

application, the application must expose its components. A component of an application makes itself available to other 

applications by setting its exported flag attribute to true. In the case of activity, service, and broadcast receiver 

components, the default value of the exported flag depends on an intent filter. The presence of one or more intent 

filters in a component indicates that the component is exported. In the case of a content provider component, if an 

application uses an API level less than 17, then the content provider component is exported by default. 

Security in Android is implemented at both system and application levels. At the system level, Android uses the 

sandboxing technique, which creates a virtual isolated execution environment for an application. However, the 

isolation breaks when an application communicates with another application. Here, Android provides permission-

based protection at the application level. Permissions are used to protect the exposed components, which participate 

in inter-application communications. A permission can be compared to a label, which is attached to a sensitive object. 

A subject willing to access the sensitive object must first acquire the permission. An application that offers services 

to other applications declares a permission and then protects its exposed component with the permission. Other 

applications willing to avail the services must use or acquire the permission declared by the application containing the 

protected component. The acquired permission must be accepted by users during application installation. Since 

Android 6.0 or API level 23, users have to accept the permission during runtime. Additional details on permission-

based security in Android can be found in [8, 9, 34]. 

We illustrate the collaborative model and its security in Android through a motivational example shown in Figure 

1, which presents three applications: A1, A2, and A3. Applications A1 and A2 offer services to other applications by 

exposing some of their components. Application A1 does not protect its exposed component C12. Application A2 

protects one of its exposed component C21 with permission P while leaving another exposed component C23 

unprotected. Components C12 and C23 of applications A1 and A2 can be accessed by any application without any 



restrictions while component C21 of application A2 can be accessed only by applications that have already acquired 

the permission P. As shown in the figure, application A1 has acquired the permission P; therefore, all components of 

A1 can access the protected component C21 of application A2. Let us assume that application A3 is a malicious 

application, which tries to access the component C21 but fails because the component is protected and it has not 

acquired the permission P. However, application A3 can easily access the component C23 of the same application 

because it is not protected with a permission. Although application A3 cannot directly access the component C21 of 

application A2, it can access that component indirectly. Application A3 uses the exposed unprotected component C12 

of application A1 to access the component C21. This process is possible because the exposed component C12 is not 

protected by a permission and it has acquired the permission to access the component C21. This type of attack is called 

privilege escalation attack or confused deputy attack [4, 5, 7].  

 

Figure 1. A motivational example of the collaborative model and its security. 

The example shows that protecting some of the exposed components does not protect an application. A developer 

should protect all exposed components of an application. Despite having all exposed components of an application 

protected, a malicious application can attack the application through other unprotected applications. Thus, the 

collaborative model can be risky even for the protected applications if some of the applications installed on the device 

are unprotected. 

3. Related works  

Recently, security and privacy issues in Android have been extensively investigated. Many tools and techniques 

have been proposed for identifying security issues in Android applications including the security issues related to the 

collaborative model. ComDroid [11] performs analysis of inter-application communication vulnerabilities on 100 

Android applications. It statically analyzes the components and intents of an application. If a component has been 

exposed to other applications and it is either not protected by a permission or protected by a weak permission, then a 

warning is generated. ComDroid also generates a warning when an application tries to communicate with another 

application through an implicit intent with no permission or a weak permission. It defines weak permissions as those 

permissions that are declared with either normal or dangerous protection level. Enck et al. [12] performed a source 

code analysis on 1,100 Android applications. They investigated the security and privacy issues of inter-application 

communications caused by implicit intents and unprotected dynamic broadcast receivers including several security 

and privacy issues of Android applications. However, they did not perform analysis on the manifest file, which 

contains most of the information on the exposed components. EPICC [13] mapped the inter-component 

communications both within an application and among applications. It determined the entry and exit points of 

applications by analyzing the values of intent filters and intents, respectively. In the process, EPICC also analyzes the 

exposed components. Finally, it connects the exit points with possible entry points. Furthermore, it also performs 

analysis of inter-component communication vulnerabilities similar to ComDroid on 1,200 Android applications. 

Many researchers have investigated possible attacks attributed to exposed components, in addition to general 

inter-application communication vulnerabilities. One widely investigated attack is the privilege escalation attack. Felt 

et al. [5] examined 872 Android applications for privilege escalation vulnerability. They found that 320 out of 872 

applications access sensitive resources protected by permissions and at least one service or broadcast receiver 



component is exposed but unprotected in all 320 applications. They also proposed an IPC inspection technique as a 

defense against privilege escalation attack. Covert [14] mainly analyzed the privilege escalation vulnerability along 

with several other inter-application communication vulnerabilities in 500 Android applications. It extracts essential 

information from an application through static analysis. The extracted information from different applications is then 

combined and converted to a formal specification language. It then performs compositional analysis to find the 

vulnerabilities. CHEX [15] analyzed 5,486 Android applications for component hijacking vulnerability, which 

includes all kinds of attacks that gain unauthorized access to protected or private resources through exposed 

components. It is not only limited to privilege escalation or confused deputy attack, but also includes those attacks 

where permission protection is not explicitly involved. 

Developers commit mistakes of exposing components or intents even for intra-application communications, 

which increase the attack surface. ComDroid [11] recommends changes in the Android platform to reduce the attack 

surface. Kantola et al. [3] implemented a heuristic-based approach in the Android platform to make the exposed 

components and intents private, which reduces the attack surface. Felt et al. [22], Au et al. [23], and Bartel et al. [24] 

separately investigated applications that use more permissions than required. These over-privileged applications can 

become accessories in a privilege escalation attack. 

Researchers have performed empirical studies on permission-based security as well as inter-application 

communications in Android. Li et al. [16] performed a very short empirical study on 2,000 Android applications for 

permission-protected components. They found a negligible number of components protected in comparison to the 

number of components exposed. Barrera et al. [21] studied permission use pattern on 1,100 applications. They used 

the self-organizing map to visualize the permission use pattern based on the category of applications. Maji et al. [25] 

and Sasnauskas and Regehr [26] in separate works investigated the robustness of both intra-application and inter-

application communications. They discovered that components are vulnerable against receiving unexpected intents, 

which cause them to crash. 

In contrast to existing related works, our work does not focus on identifying or solving any specific security issue, 

such as privilege escalation attack [5, 14, 15], over-privileged applications [22, 23, 24], or component leaks [16]. Our 

work concentrates on evaluating the security risk caused by the collaborative model through a large-scale empirical 

study. However, similar to some existing works [3, 11, 21], we identify and discuss the incorrect implementations of 

the collaborative model and its security. Furthermore, we discuss some of the security issues, such as issues related to 

custom permissions, which have never been discussed previously in detail. 

4. Empirical studies 

We performed empirical studies on 13,944 free Android applications downloaded from Google Play Store in 

May-June 2015. The top 500 free applications from each category displayed in the Play Store were downloaded 

manually by one of the authors. In some categories, there were less than 500 free top applications. Many applications 

were placed in multiple categories. Only one instance of these applications was downloaded. Google Play Store is 

localized. We used the Tor Browser [17] to localize the Play Store to the United States when downloading the 

applications. Android applications are distributed in APK format. We used the Apktool [18] for reverse engineering 

of APK files of each downloaded Android application and extracted their manifest file. We then performed analysis 

on those manifest files. To perform analysis, we wrote a small program, which parses the manifest file and extracts 

the required information. In many cases, especially those cases where incorrect implementations were detected, the 

extracted information were manually verified by one of the authors. Among the 13,944 applications in the dataset, 

there are 461 duplicate applications with different versions. In this empirical study, we have treated the duplicate 

applications with different versions as separate applications because the manifest files are modified in many of those 

applications. Although the collaborative model and its security risk is the main target of our study, we also performed 

several other empirical studies. 

4.1 Size of Android applications 

Size is considered as an important metric in the software industry. Most commonly, it is measured in number of 

lines of code (LOC). Android applications are composed of components, which have pre-defined lifecycle. These 

components are created under the skeleton of their life cycle methods. Android programmers also make extensive use 



of the API provided by the framework. Under these circumstances, the size of a component is bound to a certain length. 

Instead of measuring the size of an Android application in terms of LOC, we define the size of an application in a 

higher level of abstraction, which is the number of components (NOC) in an application. We classified applications 

into small, medium, and large size depending on the number of components up to 10, 11 to 50, and above 50, 

respectively.

 

Figure 2. Application size in the dataset. 

 

Figure 3. Number of components in applications. 

 In the dataset of 13,944 applications, almost 94% of the applications are small and medium sized combined as 

shown in Figure 2. Only 6% of the applications have more than 50 components. Component distribution in the 

applications is shown in Figure 3. The highest number of applications, 1204 applications in the dataset, have 2 

components each. Most of the applications (85%) have 1 to 30 components. Some applications have a large number 

of components. In the dataset, 17 applications have more than 200 components each. Two applications, WeChat 

(com.tencent.mm) and Alipay (com.eg.android.AlipayGphone), have more than 600 components each. We also found 

26 applications without any components. These applications are mostly plugins, codecs, and libraries. The package 

names of some of these applications are com.aviary.android.feather.plugins.borders.free, com.mxtech.ffmpeg.tegra3, 

and org.opencv.lib_v24_armv7a. In Google Play Store, applications are identified by a package name, which we will 

use throughout the paper to identify an application. We will append the version name to the package name if available 

(packageName-versionName format). We have excluded 26 applications, which do not have any components, from 

further empirical studies unless explicitly specified. 

4.2 Android applications’ structure 

Android applications are composed of activity, service, broadcast receiver, and content provider components. An 

activity represents a user screen or a user interface through which a user interacts with the application. Services are 

generally used to perform long-running background tasks, such as downloading files, and they do not provide a user 

interface. A broadcast receiver handles system or application generated events. To handle an event, a broadcast 

receiver needs to be registered for that event. Whenever the registered event triggers, the broadcast receiver is notified. 

For example, a broadcast receiver can be registered to be notified about system boot event. A content provider manages 

access to a structured set of data. In addition to these four types of components, an activity alias can be created in 

Android applications. In this paper, we treat an activity alias as a separate activity component because the attributes 

of an activity alias can be different from the attributes of its originating activity. 

Applications in the dataset have a total of 241,052 components. Out of all the component types, the quantity of 

the activity component is significantly large (77%) as shown in Figure 4(a). Service, broadcast receiver, and content 

provider components combined constitute less than one-fourth of all the components. Only 421 components out of all 

the activity components are activity aliases. All activity aliases found in the dataset are restricted to 201 number of 

applications. The distribution of the activity aliases in those applications is shown in Figure 4(b). Out of the 201 

applications, 133 applications have an activity alias each, whereas the highest number of activity aliases found in a 

single application com.google.android.apps.plus-5.8.0.96635860 is 14. Excluding the 26 applications that do not have 

any components, only 41 applications out of 13,918 applications do not have an activity component as shown in Figure 

4(c). Most of the applications that do not have an activity component belong to plugins or add-on applications, such 



as anonymous.plugin.luann-1.2, com.anysoftkeyboard.languagepack.alt.english-20100926, and 

com.appventive.tasksaddon-1.11. Content provider components are the least used components in the applications. 

Only around 17% of the applications have at least one content provider component, while 33% of the applications in 

the dataset are composed of only activity components as shown in Figure 4(d). However, there are very few 

applications that contain only one type of components among service, broadcast receiver, and content provider. These 

applications belong to the same group of 41 applications where we could not find an activity component. 

 

Figure 4. Applications composition in the dataset. 

4.3 Public components 

An Android application can expose its components for third-party applications. We define exposed components 

as public components and applications that have at least one public component as public applications. As discussed in 

Section 2, a component is declared public by setting its exported flag to true. In the case of activity, service, and 

broadcast receiver components, the default value of the exported flag depends on the intent filter. The presence of one 

or more intent filters set the flag to true. A content provider component is by default exported if the application uses 

an API level less than 17 by setting the value of android:minSdkVersion or android:targetSdkVersion attributes. An 

Android application has one main activity component, which starts when the application is launched. The main activity 

component is specified through an intent filter and is not considered as vulnerable. We exclude the main activity from 

the list of public components unless the main activity component also declares another intent filter. 

As shown in Figure 5(a), only around 17% components in the dataset are public, but these public components are 

distributed in a large number of applications. Around 65% of the applications have at least one public component. 

Activity and broadcast receiver components constitute the major share of public components as shown in Figure 5(b). 

Although the broadcast receiver components constitute only 12% of the total components, it is the top contributor of 



public components with 52%. Among the 14,529 public activity components, we found 363 activity aliases. Only 53 

activity aliases are private in the dataset. 

 

Figure 5. Public components and applications. 

A component can be explicitly made private by setting its exported flag to false. The private components do not 

need to declare intent filters because they cannot receive explicit or implicit intents from another application. However, 

a large number of private components in the dataset declare intent filters. For example, some private components in 

com.facebook.pages.app, com.google.android.youtube-10.21.58, and com.android.chrome-43.0.2357.93 applications 

declare intent filters. The distribution of these private components containing intents filters according to their type is 

shown in Figure 5(c). We found some use cases in the applications where it is appropriate. Components can receive 

implicit intents from the system. These components must declare intent filters. However, the system-originated 

implicit intents can also be received by private components. Therefore, it is not only appropriate to make these 

components private explicitly, but it also avoids malicious broadcast injection vulnerability. For example, if the 

components are public and they do not validate the received intents, then any application can send malicious explicit 

intents to those components. We also found some use cases where it is inappropriate. Private components are using 

non-standard actions or custom actions in the intent filter, which means that these components can only receive 

implicit intents sent by the same application. Although it does not have any known security vulnerabilities, it can 

create a reliability issue. Even if a component is private, intent filters declared by that component make it appear in 

the Android chooser list. If an application sends an implicit intent via chooser, which matches with the intent filter of 

the private component, then the chooser will display the name of the application containing the private component as 

one of the service providers. If a user selects the application, then the application will crash, throwing a security 

exception. Although this behavior has been corrected since Android 4.2, earlier versions still show the same behavior. 



We also found a large number of components that explicitly set their exported flag to true, but do not declare any 

intent filters. For example, some public components in com.amazon.kindle-4.13.0.185, 

com.avast.android.mobilesecurity-4.0.7886, and com.android.calendar-5.2.1-94626333 applications do not have an 

intent filter. The distribution of these public components according to their type is shown in Figure 5(d). This is an 

incorrect technique to declare public components, which make the components vulnerable. If a public component does 

not declare an intent filter, then it can be accessed only through explicit intents. Unlike private components, which 

can be accessed only through explicit intents generated by the same application, the public components without intent 

filters can be accessed through explicit intents generated by any application including malicious applications. The 

only restriction is that the applications must have prior knowledge of the component’s class name. There is a large 

number of reverse engineering tools available for Android applications through which component’s class name can 

be easily extracted. The vulnerability can result into both security and reliability issues. If the component is not 

protected by a permission, then it may cause a security issue. Meanwhile, if the component does not validate the 

received explicit intent, then it may cause reliability issue. The vulnerability can be avoided by either making these 

components private or protecting the components with a permission. 

4.4 Permission-based protection 

An Android application can communicate with both system applications, such as contacts and user applications. 

System applications are also referred as platform applications or stock applications. We refer user applications to those 

applications that are not system applications. Sensitive system applications and system resources are protected with 

system-defined permissions. For example, an application must have READ_CONTACTS permission to read contact 

information. Similarly, an application must have INTERNET permission to use the internet resource. However, a user 

application needs to define a custom permission to protect its exposed components. A custom permission is declared 

through a permission tag in the manifest file. 

 The applications in the dataset declare a total of 4,664 custom permissions as shown in Figure 6(a). Some 

applications declare the same permission more than once. We found 13 these applications in the dataset. The 

com.animoca.google.astroboydash-1.4.3 application has two duplicate permissions whereas twelve other applications, 

such as com.apcurium.MK.FlashCab-2.0.13 and com.mobage.ww.a1903.SWTD_Android-1.3.1 have one duplicate 

permission each. The dataset also contains 437 duplicate custom permissions across applications, which mean that a 

permission declared by an application has also been declared by other applications. For example, 

com.foursquare.permission.LOGIN permission is declared by both com.foursquare.robin-2015.06.08 and 

com.joelapenna.foursquared-2015.05.28 applications. The duplicate permissions across applications also include 

those 14 permissions that were found duplicate within the same application. While declaring custom permissions, a 

common practice is to follow “packageName.permissionName” naming convention. However, the empirical results 

suggest that some developers are not following the practice, which results into duplicate custom permissions across 

applications. If two applications with a duplicate custom permission are installed in a device, the application that is 

installed first holds the permission, which means that if the second application has protected its component with the 

duplicate permission, then the first application can access the protected component without acquiring the permission 

of the second application. However, Android 5.0 and higher has mitigated this problem to some extent by allowing 

duplicate custom permissions to be declared only by applications signed with the same certificate. If the applications 

are not signed with the same certificate, then the installation of the second application will fail with an 

INSTALL_FAILED_DUPLICATE_PERMISSION error. 

A large number of applications in the dataset declare a custom permission 

“<packageName>.permission.C2D_MESSAGE” where packageName indicates the package name of the declaring 

application. This custom permission is declared to avail Android Cloud to Device Messaging (C2DM) or Google 

Cloud Messaging (GCM) service. We found 2,820 permissions, which denote that around 20% applications in the 

dataset use C2DM or GCM service. It is important to note here that C2DM has been completely shut down since 

October 20, 2015 and only GCM service is allowed presently. 

System permissions do not need to be declared by an application. However, some applications in the dataset, such 

as com.google.android.googlequicksearchbox-4.7.13.16, com.frostbank.android-1.0.1, and com.weirdvoice-74 

declare system permissions. We checked the permission declaration against 124 system permissions [19] and found 



68 instances of system permission declaration from a group of 12 system permissions. The top three system 

permissions that have been declared similar to custom permissions are FLASHLIGHT, INSTALL_SHORTCUT, and 

UNINSTALL_SHORTCUT. 

Android associates a protection level with a permission. The protection level signifies the level of security risk 

associated with the permission. There are four levels of protection: normal, dangerous, signature, and 

signatureOrSystem. A normal protection level is a minimum security risk permission that a user does not have to 

explicitly grant to an application because it is granted automatically by the system. A dangerous protection level is a 

higher security risk permission that requires explicit user consent. A permission with signature protection level can be 

used by only those applications that are signed with the same certificate. The signature-level permissions are silently 

granted by the system if the certificate matches. A permission with signatureOrSystem protection level is similar to a 

permission with signature protection level except that it can also be granted to those applications that reside in the 

system image. 

The highest number of custom permissions in the dataset has signature protection level as shown in Figure 6(b). 

Only 46 custom permissions have dangerous protection level. Applications in the dataset also have 81 custom 

permissions without any protection levels. The undefined protection level belongs to normal protection level by default. 

 

Figure 6. Custom permissions. 

4.5 Protected public components 

Public components of an Android application can be protected with permissions in the manifest file. The 

permission can be a system permission or a custom permission. For example, if a public component uses internet 

resource, which is a system-protected resource, then it is a good practice to protect the component with INTERNET 

permission to prevent unprivileged third-party applications from accessing privileged public components. Similarly, 

if a public component performs user-defined sensitive tasks, then the component needs to be protected with a custom 

permission. A permission is enforced at the component level using an android:permission attribute. In the case of 

content provider components, separate read and write permissions can be enforced at the component level using 

android:readPermission and android:writePermission attributes, respectively. The separate read and write 

permissions take precedence over the permission enforced through the android:permission attribute. We consider a 

content provider component protected if the permission is enforced by using any one of the aforementioned attributes. 

A content provider uses a content URI to identify its data. A permission in a content provider component can be 

enforced at the path level to protect a content URI. If a public content provider component is not protected at the 

component level but only protected at the path level, then we treat this content provider component as unprotected. 

Components can also be protected at the application level by enforcing a permission through an android:permission 

attribute in the <application> element of the manifest file. The application-level permission protects all the public 

components of the application. However, the component level permission overrides the application-level permission.  

 As shown in Figure 7(a), around 16% of public components are protected with permissions that leave a large 

number of components unprotected in the dataset. Only five applications in the dataset, such as bto.apps.drugdealer-



2.26, com.Teartek.MatrixWallpaper-3.4, and com.appventive.mailprovider-0.4, are protected at the application level. 

At the component level, we found both system and custom permission protected components. Out of 6,372 protected 

components, 1,254 components are protected with the system permissions whereas only 854 components are protected 

with the custom permissions. This leaves a large number of protected components that neither use the system 

permissions nor use the declared custom permissions. After investigation, we found 3,968 broadcast receiver 

components protected with the com.google.android.c2dm.permission.SEND permission. The messages received from 

GCM are handled by a broadcast receiver component that must be protected with the 

com.google.android.c2dm.permission.SEND permission. The permission 

“<packageName>.permission.C2D_MESSAGE” is declared only to prevent other applications from registering and 

receiving the messages. Out of 296 remaining protected components, a large number of broadcast receiver components 

are protected with the com.amazon.device.messaging.permission.SEND permission, which is used for Amazon Device 

Messaging (ADM) Service. Many components are protected with the system permissions that are not listed in [19], 

such as MANAGE_USERS and BIND_JOB_SERVICE. Some components are protected with custom permissions that 

are possibly declared in other applications and are not available in the dataset.  

We found some applications in which the android:permission attribute is used incorrectly, which leaves the 

applications unprotected and at security risk. In four cases, such as com.teaandtoys.unshorten-0.2 and 

com.tencent.mm-6.2.0.53_r1166628, the value of the android:permission attribute is empty. In another two cases, 

com.ncaa.mmlive.app-4.0.1 and com.tour.pgatour-4.3, the value of the android:permission attribute is assigned as 

false. We also found 25 applications, such as airborne.nbawp-3.1, com.discoverfinancial.mobile-6.3.1, and 

com.ibm.events.android.usga-3.0 in which the android:permission attribute is declared in the <intent-filter> elements. 

After manual observation, we found that all these 25 applications use IBM Push Notification service. The 

documentation [33] for using the service incorrectly states that the android:permission attribute should be used in the 

<intent-filter> element rather than the <receiver> element. 

  

Figure 7. Protected public components and applications. 

In the dataset, only 2,820 applications declare the “<packageName>.permission.C2D_MESSAGE” permission, 

but 3,968 public components are protected with the com.google.android.c2dm.permission.SEND permission. After 

investigation, we found that some applications, such as air.com.classteacher.main-7.35 and 

com.activision.callofduty.heroes-1.7.1, are protecting more than one broadcast receiver components with the 

permission, which leaves 3,746 unique applications protecting their broadcast receiver components with the 

com.google.android.c2dm.permission.SEND permission. Nevertheless, there are 926 applications that do not declare 

the “<packageName>.permission.C2D_MESSAGE” permission, but their public components are protected with the 

com.google.android.c2dm.permission.SEND permission. Further investigation shows that 242 applications, such as 

airborne.nbawp-3.1 and com.bianor.amspersonal-1.0.5 declare GCM permission with <packageName> different 

from the package name defined in the manifest tag. The remaining 684 applications, such as 

com.gmail.playmood.puzzletoys-1.1, com.funny.jokes.image.gallery-1.9, and vasiledediu.stopcrows.free-1.9 do not 

declare the GCM permission, but protect their public components with the 

com.google.android.c2dm.permission.SEND permission. 



We also found 1,151 private components protected with permissions. The private components include those 

components that set the exported flag to false explicitly and do not have an intent filter, set the exported flag to false 

explicitly and have intent filters, and neither set the exported flag explicitly nor have any intent filters. For example, 

the com.cp.mpos application protects all of its private components with permissions. Some of the components in the 

applications, such as com.dollarbank.onlinebanking-2.4.2, com.facebook.groups, and 

com.yahoo.mobile.client.android.im-1.8.8 have intent filters with exported flag set to false. However, those private 

components are protected with permissions.  

Some system-generated intents are protected with the system permissions. An application can receive these 

intents by declaring the appropriate intent filters and the corresponding permissions. A large number of applications 

in the dataset declare intent filters to receive the protected intents. However, the applications have not declared the 

required permissions. For example, 681 applications, such as com.facebook.groups, 

com.google.android.apps.authenticator2-2.49, and yong.universalplayer-3.2.3, declare the intent filter to receive 

android.intent.action.BOOT_COMPLETED intent, but they do not use the 

android.permission.RECEIVE_BOOT_COMPLETED permission. Although it does not create any serious security 

and reliability issues, the applications will not be able to receive the protected intents. Hence, the applications will not 

perform the intended task. 

Only 449 public applications in the dataset are completely protected, which means that all of their public 

components are protected with permissions. Among the 8,594 unprotected applications, 4,350 applications have none 

of their public components protected. The remaining 4,233 applications are partially protected. The distribution of the 

protected components according to their type is shown in Figure 7(b). 

4.6 Sensitive public applications 

The definition of public applications from Section 4.3 is further refined as those applications that have at least 

one unprotected public component. An application is considered as a sensitive application if it performs a task that 

directly or indirectly involves sensitive user data and may cause personal or monetary loss. For example, reading 

contact information involves sensitive user data, such as email addresses and phone numbers, which may cause 

personal loss if stolen. Similarly, sending SMS may cause monetary loss if the recipient number is a premium rate 

number. Collecting user data and sending premium-rate SMS messages are the most common malicious activities [10]. 

Sensitive system and application resources are protected with system permissions and custom permissions, 

respectively. The protection level of a permission further defines the level of security risk associated with the protected 

sensitive resources. Out of four protection levels discussed in Section 4.4, only permissions with the dangerous 

protection level is considered as high-security risk permissions. We define a sensitive public application as an 

application that has at least one unprotected public component and uses at least one dangerous system or custom 

permission. 

 

Figure 8. Frequently used system permissions. 

 

Figure 9. Sensitive applications.



 An Android application uses permission through the <uses-permission> element in the manifest file. Only 400 

applications in the dataset do not use any permissions. System permissions at [19] are not comprehensive. To obtain 

the complete list of system permissions, we extracted all the unique occurrences of system permissions used in the 

applications of the dataset. The system permissions can be identified by its namespace as android.permission.* except 

in few cases. We extracted a total of 321 unique system permissions. After manually checking all these permissions, 

163 incorrect permissions were found. Most of the incorrect permissions appear to originate from developer mistakes 

such as, android.permission.BIND.WALLPAPER instead of android.permission.BIND_WALLPAPER, 

android.permission.ACCESS_FINE_LOCATIION instead of android.permission.ACCESS_FINE_LOCATION, and 

android.permission.GET_TASK instead of android.permission.GET_TASKS in app.cobo.launcher-1.3.9.5, 

com.wine.chroisen2eng-1.0.5, and com.CoolTopFreeGamesandApps.moneytime-1.1 applications, respectively. We 

also found 41 applications, such as com.allso.risewarsads-7.4, com.nicegame.racing-1.06, and 

com.polarbit.rthunderlite-1.2.0 in which the <uses-permission> element is declared inside the <application> element 

whereas it should have been declared outside the <application> element in the manifest file. If an application tries to 

access resources protected by the incorrectly used system permission, then the application will crash by throwing a 

security exception. After removing the incorrect permissions, we obtained a total of 158 unique system permissions. 

We then derived the final list of 178 unique system permissions by combining the permissions at [19] and the 

permissions extracted from the applications. This permission list is still not exhaustive, but contains all the system 

permissions used by the applications in the dataset. We performed a short analysis on frequently used system 

permissions. The top twenty frequently used system permissions in the dataset are shown in Figure 8.  

 Among the 178 unique system permissions, 23 system permissions are dangerous permissions. Owing to the 

common use of some system permissions, such as INTERNET and CHANGE_WIFI_STATE, their protection level has 

been downgraded from dangerous to normal. Some system permissions, such as USE_CREDENTIALS, have been 

removed but temporarily kept with downgraded protection level for backward compatibility. Obtaining a 

comprehensive list of dangerous custom permissions is a non-trivial task. As of July 2017, Google Play Store has 

more than 3 million applications [20] and each of those applications can declare dangerous custom permissions. In 

this paper, we limit the discussion to dangerous custom permissions declared by only those applications that are 

present in the dataset. As discussed in Section 4.4, there are 46 dangerous custom permissions declared by the 

applications in the dataset. 

A sensitive application in the dataset is an application that uses at least one of the 69 (23 system and 46 custom) 

dangerous permissions. We found a total of 10,907 sensitive applications, where 3,030 applications are private as 

shown in Figure 9. Private applications do not expose any components. Out of the 7,877 public applications that use 

one or more dangerous permissions, 418 applications are completely protected, which leaves 7,459 applications in the 

dataset as sensitive public applications. 

5. Discussion 

In Section 4, we performed several empirical studies and obtained various results. In this section, we interpret 

these results in the context of collaborative model and its security risk.  

5.1 Scale of collaboration 

Collaboration in Android applications is achieved through public components. The empirical results in Section 

4.3 suggest that a large number of applications (65%) participate in collaborative work through comparatively less 

number of components (17%). It indicates that a large number of applications are mostly performing their tasks 

through private components while still offering some services to third-party applications. If we take the component 

types into account, then the broadcast receiver components are clearly on the top of the list of public components with 

52%. Although the broadcast receiver components participate in the collaborative work, they do not offer any services 

to third-party applications. They receive a system or an application event, and then either perform a very short task 

themselves or start other components to perform a task. The tasks, either performed by themselves or through other 

components, are generally private to an application. If we limit the collaborative model in terms of services offered 

by applications, then only 45% of the applications participate in this limited version of the collaborative model through 



8% components. Activity components are the most frequently used components for offering services to third-party 

applications. 

 Although the definition of public components, specifically for activity components, stated in Section 4.3 is 

absolutely correct, all public activity components cannot collaborate openly. When an implicit intent is used to start 

an activity component, and if the intent has not been placed into any categories, then the system places it into 

CATEGORY_DEFAULT. This means that a public activity component of an application willing to receive an implicit 

intent from another application must declare at least “android.intent.category.DEFAULT” as a category in its intent 

filter. The public activity components that do not declare at least one category in their intent filter can only be accessed 

through explicit intents. Given that an explicit intent requires prior knowledge of the target component name, it 

imposes certain restrictions in the collaboration. We found 4,112 activity components that are public but do not declare 

a category. If we further limit the collaborative model by not considering the collaboration through explicit intents, 

then around 41% of the applications participate in the collaborative model through only 6% components. Nevertheless, 

activity components take the lead role in the collaboration. 

 Android applications are primarily designed for a very specific purpose. However, 41% (27% small, 61% 

medium, and 12% large) of the applications in the dataset are offering their services to third-party applications through 

6% (68% activity, 19% service, and 13% content provider) components. Although it is not the subject of investigation 

in this paper, the major motivations behind offering services could be monetary gain through advertisements and 

popularity gain for the application. Regardless of the reasons, offering services helps both developers and user 

communities of Android. While developers can rapidly develop applications by taking advantage of the existing 

collaborative applications, users get the option to select the best application among the collaborative applications to 

avail services. In summary, we can state that the collaborative model has been implemented in a large number of 

applications and is contributing to the success of Android. 

5.2 Security risk assessment 

In Section 5.1, we restricted the definition of the collaborative model in terms of services offered by an application 

to third-party applications. In this section, we fall back to the original definition in which all the public components 

participate in some form of collaboration. By this definition, 65% of the applications collaborate through 17% public 

components, which denote that 65% of the applications in the dataset are at security risk if all of their public 

components are not protected with permissions. The empirical results in Section 4.5 show that only around 5% of the 

applications among all the public applications are completely protected, which leaves a large number of applications 

(62%) unprotected and at security risk. 

Although 62% of the applications are at security risk, compromise on these applications may not cause severe 

damage unless the applications are performing sensitive tasks. The empirical results in Section 4.6 show that around 

57% of public applications in the dataset are performing sensitive tasks. Among these applications, only 418 

applications are completely protected, which means that 54% of the applications are at serious security risk and 

compromise on these applications may cause financial or personal loss to users. As discussed in Section 2, all public 

applications (62%) can become accessories in privilege escalation attack if they have the privilege of accessing 

protected components. Thus, even protected public applications can be at security risk indirectly.  

 The level of security risk can be further assessed depending on the type of components used for collaboration. 

An activity component is the most preferred component type for collaboration because it presents a UI screen and the 

task is performed through user interactions. An observant user can detect malicious behavior and minimizes the 

security risk. Meanwhile, collaboration through a service component maximizes the security risk because service 

components are executed in the background without user attention. The empirical results in Section 4.3 show that 

collaboration is mostly performed through activity (36%) and broadcast receiver (52%) components, which are 

positive indications. However, the empirical results in Section 4.5 show that most of the activity (99%) and broadcast 

receiver (78%) components are not protected. Broadcast receiver components are mostly used to receive system events. 

Although an application cannot generate system events, an unprotected public broadcast receiver supposed to receive 

only system events can be highly vulnerable to malicious broadcast injection [11]. Service (7%) and content provider 

(5%) components are the least used components for collaboration, which are again positive indications. Compared to 

other component types, a large number of services (37%) are protected, which means that developers are aware of the 



security risk associated with the collaboration through service components. However, 63% of the services are 

unprotected, which is extremely dangerous for the applications in terms of security. 

5.3 Security risk mitigation 

The collaborative model in Android always invites direct or indirect security risk. As discussed in Section 2, even 

securely implemented collaboration has an indirect security risk. The empirical results in this paper indicate that a 

large number of applications perform collaboration. Under these circumstances, the first step for developers is to avoid 

the security risk caused by unnecessary collaboration. For example, a large number of applications expose components 

while collaborating with the system, which is not required. Applications can collaborate with the system without 

exposing components. One best practice is to set the exported flag to false explicitly if the component is not supposed 

to receive intents from other applications. Our empirical results in Section 4.3 suggest that some developers are 

following this practice, which avoids the security risk.  

Exposing components for collaboration is unavoidable under many circumstances. In these cases, developers 

should avoid the use of sensitive resources, particularly protected by dangerous permission. This makes the 

applications less vulnerable for attackers even if the components are unprotected because the attackers cannot access 

sensitive resources. However, our empirical results in Section 4.6 suggest that a large number of applications with one 

or more exposed components use sensitive resources. If developers cannot avoid exposing components and using 

sensitive resources, then developers should protect the exposed components. However, our empirical results suggest 

that very few applications that use sensitive resources are completely protected. Developers can use some existing 

tools, such as Android Lint [35] integrated with Android Studio and ComDroid [11], which provide warnings against 

unprotected exposed components. 

Following the best practices for security and privacy [36] does not guarantee risk-free applications. Developers 

have to implement the security correctly in the applications. In the empirical study, we found several mistakes made 

by developers in implementing permission-based security for the collaborative model. Therefore, developers should 

ensure that security has been implemented correctly. In addition to tools, such as Android Lint [35] and ComDroid 

[11], which detect unprotected components and other security vulnerabilities, developers can use our tool 

ManifestInspector [37], which is an open source rule-based static analysis tool that detects all kinds of errors in the 

Android manifest file including errors in implementing the collaborative model and its security. 

6. Threats to validity 

The empirical studies have been performed on top popular applications from all categories present in the Google 

Play Store. Although the dataset represents all kinds of applications, it may not represent those applications that are 

comparatively low quality, which may affect the empirical results related to security risk. All empirical results are 

entirely based on the analysis of manifest files of the applications. Any kind of source code analysis has not been 

performed in this paper, which may result in some deficiency. A broadcast receiver component can be declared in the 

source code in addition to the manifest file. Security of these dynamic broadcast receiver components is also 

implemented in the source code. Our empirical studies oversight all aspects of dynamic broadcast receiver components. 

Android applications collaborate in two different ways: by receiving intents from other applications through exported 

components and by sending intents to other applications that have exported components. Given that we have not 

analyzed the source code, our empirical results do not include collaboration that is achieved through sending intents 

to other applications. However, one application must have an exported component to achieve any kind of collaboration 

between applications. 

 In Section 4.6, we defined a sensitive public application as an application that has at least one unprotected public 

component and uses at least one dangerous system or custom permission. Although we managed to identify all the 

dangerous system permissions used by the applications in the dataset, we could not obtain the comprehensive list of 

dangerous custom permissions, which may affect the empirical results of sensitive applications. Our definition of 

sensitive public application is broad. We assumed that there is always a path in an application from an unprotected 



public component to resources protected by dangerous permissions. In reality, this path may not always exist. For 

accuracy, reachability analysis is required.  

7. Conclusion 

We performed several empirical studies focusing on the collaborative model and its security risk. The empirical 

results suggest that a large number of Android applications are small to medium-sized applications. Very small number 

of applications are large-sized. Irrespective of application size, a large number of applications (65%) participate in 

collaboration with maximum frequency among medium-sized applications. Although collaboration is performed by a 

large number of applications, comparatively fewer applications (41%) offer services to third-party applications. While 

collaboration is achieved mainly through broadcast receiver components, applications offer services mainly through 

activity components. In summary, the empirical results suggest that the collaborative model has succeeded in Android 

applications. 

 The study of the collaborative model in Android cannot be completed without the study of its security. The 

collaborative model always invites direct or indirect security risk and it is up to the developers to mitigate the risk. 

The empirical results suggest that a large number of applications (54%) are at serious security risk, which means that 

developers are either not aware of security issues associated with the collaborative model or implementing security 

incorrectly. In the empirical study, we observed that developers are making several mistakes in implementing the 

security. This study clearly indicates that the success of the collaborative model can be hindered by its high-security 

risk. 

 

Acknowledgements 

This research was supported by the BK21 Plus project (SW Human Resource Development Program for Supporting 

Smart Life – 21A20131600005) and the Basic Science Research Program through the National Research Foundation 

of Korea (No. NRF-2017R1D1A3B04035880) funded by the Ministry of Education, School of Computer Science and 

Engineering, Kyungpook National University, Korea. 

 

References 

[1] Smartphone OS market share - http://www.idc.com/prodserv/smartphone-os-market-share.jsp [accessed on July 

5, 2017]. 

[2] Revenue for developers in Google play store vs iOS app store - 

http://www.pcmag.com/article2/0,2817,2498161,00.asp [accessed on July 5, 2017]. 

[3] Kantola, David, Erika Chin, Warren He, and David Wagner. "Reducing attack surfaces for intra-application 

communication in android." In Proceedings of the second ACM workshop on Security and privacy in 

smartphones and mobile devices, pp. 69-80. ACM, 2012. 

[4] Davi, Lucas, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. "Privilege escalation attacks 

on android." In Information Security, pp. 346-360. Springer Berlin Heidelberg, 2011. 

[5] Felt, Adrienne Porter, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and Erika Chin. "Permission Re-

Delegation: Attacks and Defenses." In USENIX Security Symposium. 2011. 

[6] Intents and Intent Filters - http://developer.android.com/guide/components/intents-filters.html [accessed on July 

5, 2017]. 

[7] Bugiel, Sven, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and Bhargava 

Shastry. "Towards Taming Privilege-Escalation Attacks on Android." In NDSS. 2012. 

[8] Enck, William, Machigar Ongtang, and Patrick McDaniel. "Understanding android security." IEEE security & 

privacy 1 (2009): 50-57. 



[9] Shabtai, Asaf, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, and Chanan Glezer. "Google android: 

A comprehensive security assessment." IEEE Security & Privacy 2 (2010): 35-44. 

[10] Felt, Adrienne Porter, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner. "A survey of mobile 

malware in the wild." In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and 

mobile devices, pp. 3-14. ACM, 2011. 

[11] Chin, Erika, Adrienne Porter Felt, Kate Greenwood, and David Wagner. "Analyzing inter-application 

communication in Android." In Proceedings of the 9th international conference on Mobile systems, 

applications, and services, pp. 239-252. ACM, 2011. 

[12] Enck, William, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. "A Study of Android Application 

Security." In USENIX security symposium, vol. 2, p. 2. 2011. 

[13] Octeau, Damien, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le 

Traon. "Effective inter-component communication mapping in android with epicc: An essential step towards 

holistic security analysis." In USENIX Security 2013. 2013. 

[14] Bagheri, Hamid, Alireza Sadeghi, Joshua Garcia, and Sam Malek. "Covert: Compositional analysis of android 

inter-app permission leakage." IEEE transactions on Software Engineering 41, no. 9 (2015): 866-886. 

[15] Lu, Long, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. "Chex: statically vetting android apps for 

component hijacking vulnerabilities." In Proceedings of the 2012 ACM conference on Computer and 

communications security, pp. 229-240. ACM, 2012. 

[16] Li, Li, Alexandre Bartel, John Klein, and Yves Le Traon. "Automatically exploiting potential component leaks 

in android applications." In IEEE 13th International Conference on Trust, Security and Privacy in Computing 

and Communications (TrustCom), pp. 388-397. IEEE, 2014. 

[17] Tor Browser - https://www.torproject.org/projects/torbrowser.html.en [accessed on July 5, 2017]. 

[18] Apktool - https://ibotpeaches.github.io/Apktool/ [accessed on July 5, 2017]. 

[19] System Permissions - http://developer.android.com/reference/android/Manifest.permission.html [accessed on 

November 30, 2016]. 

[20] AppBrain - Number of available android applications in the Play Store. http://www.appbrain.com/stats/number-

of-android-apps. [Accessed on July 5, 2017]. 

[21] Barrera, David, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. "A methodology for empirical 

analysis of permission-based security models and its application to android." In Proceedings of the 17th ACM 

conference on Computer and communications security, pp. 73-84. ACM, 2010. 

[22] Felt, Adrienne Porter, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. "Android permissions 

demystified." In Proceedings of the 18th ACM conference on Computer and communications security, pp. 627-

638. ACM, 2011. 

[23] Au, Kathy Wain Yee, Yi Fan Zhou, Zhen Huang, and David Lie. "Pscout: analyzing the android permission 

specification." In Proceedings of the 2012 ACM conference on Computer and communications security, pp. 

217-228. ACM, 2012. 

[24] Bartel, Alexandre, John Klein, Martin Monperrus, and Yves Le Traon. "Static analysis for extracting permission 

checks of a large scale framework: The challenges and solutions for analyzing Android." IEEE Transactions on 

Software Engineering 40, no. 6 (2014): 617-632. 

[25] Maji, Amiya K., Fahad Arshad, Saurabh Bagchi, and Jan S. Rellermeyer. "An empirical study of the robustness 

of inter-component communication in Android." In 42nd Annual IEEE/IFIP International Conference on 

Dependable Systems and Networks (DSN), pp. 1-12. IEEE, 2012. 



[26] Sasnauskas, Raimondas, and John Regehr. "Intent fuzzer: crafting intents of death." In Proceedings of the 2014 

Joint International Workshop on Dynamic Analysis (WODA) and Software and System Performance Testing, 

Debugging, and Analytics (PERTEA), pp. 1-5. ACM, 2014. 

[27] Bouncer - http://googlemobile.blogspot.kr/2012/02/android-and-security.html [accessed on July 5, 2017]. 

[28] Oberheide, Jon, and Charlie Miller. Dissecting the android bouncer. In SummerCon, 2012. 

[29] Chen, Kai, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing Huang, Wei Zou, and Peng Liu. 

"Finding unknown malice in 10 seconds: Mass vetting for new threats at the google-play scale." In 24th 

USENIX Security Symposium, pp. 659-674. 2015. 

[30] BrainTest – A New Level of Sophistication in Mobile Malware - 

http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware/ [accessed 

on July 5, 2017]. 

[31] Zhou, Yajin, Zhi Wang, Wu Zhou, and Xuxian Jiang. "Hey, You, Get Off of My Market: Detecting Malicious 

Apps in Official and Alternative Android Markets." In NDSS. 2012. 

[32] Verify apps - https://support.google.com/accounts/answer/2812853?hl=en [accessed on July 5, 2017]. 

[33] IBM Push Notification - 

http://developer.xtify.com/display/sdk/Getting+Started+with+Google+Cloud+Messaging [accessed on 

November 30, 2016]. 

[34] Jha, Ajay Kumar, and Woo Jin Lee. "Analysis of Permission-based Security in Android through Policy Expert, 

Developer, and End User Perspectives." Journal of Universal Computer Science 22, no. 4 (2016): 459-474. 

[35] Android Lint - https://developer.android.com/studio/write/lint.html [accessed on July 5, 2017] 

[36] Best Practices for Security & Privacy - https://developer.android.com/training/best-security.html [accessed on 

July 5, 2017] 

[37] Jha, Ajay Kumar, Sunghee Lee, and Woo Jin Lee. "Developer mistakes in writing Android manifests: an 

empirical study of configuration errors." In Proceedings of the 14th International Conference on Mining 

Software Repositories, pp. 25-36. IEEE Press, 2017. 

 

Vitae 

Ajay Kumar Jha is currently a Postdoctoral Researcher at Kyungpook National University. He received his MS and 

PhD in Computer Science from Kyungpook National University, South Korea in 2013 and 2017, respectively. His 

main research interests include software engineering and mobile security. He is specifically interested in software 

testing, program analysis, empirical software engineering, and security of Android applications. 

Woo Jin Lee is currently a professor in the school of Computer Science and Engineering at Kyungpook National 

University, South Korea. He received his PhD degree in Computer Science from Korea Advanced Institute of Science 

and Technology in 1999. His main research interests include software testing, requirements engineering, and 

embedded systems. 


