
Modeling and Test Case Generation of Inter-

Component Communication in Android

Ajay Kumar Jha, Sunghee Lee, Woo Jin Lee

School of Computer Science and Engineering

Kyungpook National University

Daegu, Republic of Korea

ajaykjha123@yahoo.com, lee3229910@gmail.com, woojin@knu.ac.kr

Abstract—Currently, there is a lack of tools or techniques

which can clearly handle the complexity related to inter-

component communication while developing Android

applications. We propose a conceptual model which represents

the inter-component communication at a higher abstraction level.

We also propose a technique to derive test case from the model.

The model can be useful in handling complexity at various stages

of software engineering process. Mainly, it can be used for testing

and analysis of inter-component communication in Android

applications which we have demonstrated through experiment.

Index Terms—Android, inter-component communication,

modeling, test case generation, security analysis.

I. INTRODUCTION

In Android applications there are two kinds of

communication. First, the components interact with each other

within the application which is called intra-application

communication and second, one application communicates

with another application which is called inter-application

communication. Even in inter-application communication, it’s

the component of one application which communicates with

the component of another application. In this paper, we will

refer both types of communication as inter-component

communication (ICC) unless specified.

There is a lack of existing tools and techniques which can

practically model the ICC in Android applications. There may

be several reasons behind this but in author’s viewpoint the one

reason which stands above all is the current practice followed

during mobile application development. Most of the mobile

applications are small to medium size in terms of source code

and these applications are generally developed by either

individual developer or very small team of developers without

following any formal development process. Another reason

may be time frame. Mobile applications are generally delivered

within very short time duration in comparison to desktop

applications.

However, as mobile applications become more complex, it

is essential to follow standard software engineering processes

to assure the development of secure, high quality mobile

applications [1]. It has been proven in desktop applications that

the model-based techniques greatly reduce the complexity

during the software engineering process. For example, model-

based testing approach improves the efficiency of testing

procedures and helps in reusing the generated test cases.

Overall, current trends of mobile application development

process needs to be changed to produce high quality, secure

applications.

In this paper, we present a conceptual model to represent

the ICC in Android applications. One of the benefits of

conceptual modeling is to help the stakeholders better

understand a specific real-world domain and enhance

communication among them [2]. In-line with this benefit, the

main purpose of this work is to reduce the complexity of

testing and analyzing ICC by better understanding and

representing the domain. Though the proposed model can be

either designed from requirement specification document or

extracted from source code, we have developed a tool named

ICCMATT (ICC Modeling And Testing Tool) which extracts

the ICC graph from source code. Besides extracting the ICC

graph, the tool also automatically generates test cases from the

graph.

The rest of the paper is organized as follows. Section II

describes background and related works. Section III describes

the modeling concept in detail. Section IV describes the test

case generation technique. Section V presents and evaluates the

tool, ICCMATT and section VI concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. Inter-Component Communication

Android applications are built using four types of

components: activities, services, broadcast receivers, and

content providers. These components are loosely coupled with

each other and they are completely equipped to perform a

single task independently but as the task becomes complex they

interact with each other to complete the task. These

components interact with each other through intent. Intent is an

abstract description of an operation to be performed. Intent can

be categorized mainly into two types: explicit and implicit.

Explicit intent specifies the target component name whereas

implicit intent does not specify any target component name

instead it specifies the desired operation.

To receive intents, a component must be declared in the

manifest file which is a configuration file in the application.

Only broadcast receiver component can be declared either in

the manifest file or during runtime. Manifest file is the single-

most important resource for analyzing communication behavior

of components. Through this file, a developer specifies whether

the component will be able to communicate with component of

another application and also whether a component can

communicate explicitly or implicitly. If a component is

declared with exported flag set to true then the component can

communicate with another application otherwise it can only

communicate within the application. The flag’s default value

depends on the presence or absence of intent filter. If there is

even a single intent filter then the component is exposed to

another application.

B. Related Works

TaintDroid [3] tracks the privacy-sensitive data in the

system. It does so by tainting or labeling sensitive data and then

logging those data during application execution. TaintDroid

raises the flag if any sensitive data outflows from the

application. ComDroid [4] detects application communication

vulnerabilities by statically analyzing components and intents.

DroidChecker [5] uses inter-procedural control flow graph

searching and static taint checking to detect exploitable data

paths. JarJarBinks [6] tests the robustness of ICC by using fault

injection technique. EPICC [7] finds vulnerabilities in ICC by

connecting components, both within single applications and

between different applications.

Some initiations have been taken towards model-based

approach in engineering mobile applications, for example, in

[8] authors extend the UML to represent specific features of

Android applications and in [9] authors proposed model-driven

approach to develop mobile applications. Techniques in [10]

and [11], which focus on security aspect of Android

applications, address the issue of ICC through formal

modeling. Model-based conformance testing framework has

been presented in [12]. In contrast to aforementioned formal

model-based techniques for analyzing and testing ICC, our

novel approach uses conceptual modeling with graphical

representation.

III. MODELING CONCEPT

A. Component Representation

In our model, Android application components are

represented by rectangle but the annotations in the rectangle

differentiate the component types as shown in Fig. 1. We have

used <componentType: componentName> annotation format

which denotes the component type and its name respectively.

In certain situations during ICC the component’s name and

type are not known. In such situations we represent the

component by pseudo-component as shown in Fig. 1. We name

these pseudo-components uniquely as Sn where n is a non-zero

natural number. Android applications may contain multiple

entry points which are declared as launcher or shortcut in the

manifest file. We will represent these entry points with special

nodes as shown in Fig. 1.

B. Modeling Explicit Communication

We refer explicit communication to the communication

among components which happens through explicit intent.

Here, we have two communicating entities which in our case

are components and a medium through which components

communicate which is intent. We will refer the component

which passes the intent as source and component which

receives the intent as sink. The association between source and

sink component will be represented by a directed edge from

source to sink component.

A component may communicate with several other

components through different intents. It’s important to identify

all the intents uniquely and incorporate into the model. We

incorporate the intent by placing intent id on the edge between

source and sink components. The intent id is denoted by In

where n is a non-zero natural number. The communication

between source activity a1 and sink activity a2 in Fig. 2

represent the explicit communication.

C. Modeling Implicit Communication

We refer implicit communication to the communication

among components which happens through implicit intent.

Similar to explicit communication, implicit communication has

two communicating entities that are two components and a

medium that is intent but unlike explicit intent, implicit intent

does not define sink component. Sink component is determined

dynamically by intent resolver using matching technique. Intent

resolver first examines the intent fields and then it finds the

sink component by matching the intent fields with the attributes

of the intent filter bound to possible sink components.

Altogether we have four entities in implicit communication:

source and sink components, implicit intent and intent filter.

Further we will represent and define the relationship among

these entities through our model.

While establishing implicit communication with third party

application by sending implicit intent, developers don’t have

any knowledge of third party application such as component

name and intent filter. Developer just creates an implicit intent

and then sends that implicit intent in the wild. Though it’s

possible to know the applications which can handle the

specified operation, there is not any possible way to know the

name of the sink component. In our model, we will represent

this sink component by pseudo-component. The

communication between source activity a2 and sink component

S1 in Fig. 2 represents this implicit communication event.

There is another kind of event in implicit communication

that is an application receiving implicit intent sent by third

party application. Intent filter plays a crucial role in

determining whether to receive or reject the implicit intent sent

by third party application. There is no other way for third party

application to enter into the application without going through

intent filter. In this case, the implicit intent is unknown since it

Fig. 1. Component representation

Fig. 2. Explicit and implicit communication

Activity

A: name

Broadcast

Receiver

BR: name

Pseudo-

Component

Sn

Launcher Service

S: name

Shortcut

I2 I1
A: a1 A: a2 S1

F1

A: a3

originates from third party application but to accept the

communication one of the intent filter must declare the same

attributes as declared in the implicit intent. Instead of

representing the edge by implicit intent, here it will be

represented by intent filter Fn as shown by the edge between S1

and a3 in Fig. 2.

While receiving implicit intent from third party application,

source as well as sink components are unknown because

implicit intent originates from third party application and it

does not declare any sink component. Here we will represent

the source component by pseudo-component and we will place

one pseudo-component for each intent filter declared in the

application because each intent filter represents a possible entry

point. Possible sink component can be determined by checking

the component against which the intent filter has been declared.

The communication between source component S1 and sink

activity a3 in Fig. 2 represents this implicit event.

D. Modeling Pending Intent

Other than explicit and implicit intents, there is pending

intent in Android. Pending intent acts as a wrapper for either

explicit or implicit intents. After an application creates a

pending intent, it is handed to third party application which

later performs pre-defined task. It is most-widely used for

notification and alarm services. Here we have two parts, first

the application sends pending intent to third party application

and second, third party application executes pre-defined task on

the source application through wrapped intent. To simplify the

model; we will merge these two parts into single construct as

shown in Fig. 3. Here, the source component will be

represented by the component which sends the pending intent

and the sink component will be represented by the component

which receives the intent wrapped inside the pending intent.

The edge will be represented by the pending intent Pn.

E. Embedded Context Graph

This section can be taken as an extension to our core model.

Intents are delivered from source to sink component through

method call as a parameter. Here, context refers to the

method’s calling context that is the method in which intent

delivery method has been called. For all kinds of

communication, context is represented by edge between source

component and sink component. For example if the context is

onClick() method in explicit communication then it will be

represented as shown in Fig. 4.

IV. TEST CASE GENERATION

The main goal of testing ICC is how the component

behaves after receiving intents that is whether the component

behaves normally or it shows any unexpected behavior. It is not

that only the sink component will be affected by receiving the

intent because the same sink component may act as a source

component in the same application and the effect caused by

intent will propagate to other components. So it’s important to

tap the propagation while testing ICC. Our aim is to obtain

sequence of end-to-end ICC events. End-to-end means from

one of the entry points to one of the exit points of the graph.

Each such test sequence provides an executable test case.

The ICC graph generated through our technique has several

properties. First, the graph is multigraph with parallel edges.

Second, within single graph there are several entry and exit

nodes. Third, the graph may be cyclic. And fourth, the graph

may contain loop (pseudograph). Considering all these

properties we have proposed a novel test case generation

algorithm which is shown in Fig. 5. We have also proposed

intent and intent filter (I-IF) coverage criteria which can be

collectively used to obtain adequate and effective test suite

from our proposed model. According to our coverage criteria

each intent and intent filter should be covered at least once.

Fig. 5. Test case generation algorithm

Pn
A: t A: s

Sn
Pn

A: s

onClick
A: s

In
A: t

Fig. 3. Explicit and implicit communication

through pending intent

 Fig. 4. Explicit communication with context

V. ICCMATT

ICCMATT is a completely automated Eclipse plug-in tool

written in Java. The high-level design of ICCMATT is shown

in Fig. 6. It takes application’s source code as input and

produces two different files as output: a text file containing all

the test cases and a GraphML file containing all the application

specific data to view ICC graph.

Fig. 6. High-level design of ICCMATT

We evaluated efficiency and effectiveness of ICCMATT

tool on five Android applications: connectbot, K-9 Mail,

opensudoku, Tomdroid, and Avare. The ICC graph generated

by our tool for K-9 Mail is shown in Fig. 7. Number of test

case generated, I-IF coverage, and execution time of

ICCMATT is shown in table 1. Data in table 1 clearly show

that the ICCMATT tool is effective as well as efficient in

extracting ICC graph and generating test cases. The generated

ICC graph can not only be used for generating test cases but

also be used for various software engineering purposes

including security analysis. For example, we can easily identify

entry and exit components which are vulnerable for malicious

data injection and privacy leak respectively. The last column of

table 1 shows the number of security vulnerable components in

our benchmark applications.

Fig. 7. ICC graph of K-9 Mail app

Table 1. Evaluation results

App. Name Execution

Time

(ms)

Test

Case

I-IF

Coverage

(%)

Security

Risk

Components

K-9 Mail 67578 58 89 17

connectbot 1131 13 78 4

opensudoku 954 8 81 5

Tomdroid 1154 12 82 4

Avare 1895 24 72 3

VI. CONCLUSION

In this paper, we have proposed modeling and test case

generation technique for ICC in Android applications. We have

also developed a tool to automatically generate ICC graph and

test cases from the application’s source code. Evaluation results

show that the tools can be effectively and efficiently used for

testing and security analysis of Android applications. We

further need to evaluate the tool on large scale benchmark

applications with some extension towards automated security

analysis which includes addition of Android permission model

and security report generation.

ACKNOWLEDGMENT

This work was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education (No. NRF-

2014R1A1A2058733) and the IT R&D program of MSIP/IITP

[10041145, Self-Organized Software platform (SoSp) for

Welfare Devices].

REFERENCES

[1] Anthony I Wasserman, “Software engineering issues for mobile

application development”, in Proceedings of the FSE/SDP workshop on

Future of software engineering research, 2010, pp. 397-400.

[2] Peter P. Chen, Bernhard Thalheim, and Leah Y. Wong, “Future

directions of conceptual modeling”, in Conceptual modeling, 1999, pp.
287-301.

[3] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.
N. Sheth, “TaintDroid: an information flow tracking system for real-time

privacy monitoring on smartphones”, in Communications of the ACM,

57(3), 2014, pp. 99-106.

[4] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-

application communication in Android”, in Proceedings of the 9th

international conference on Mobile systems, applications, and services,
2011, pp. 239-252.

[5] P.P. Chan, L. C. Hui, and S. M. Yiu, “Droidchecker: analyzing android
applications for capability leak”, in Proceedings of the fifth ACM

conference on Security and Privacy in Wireless and Mobile Networks,

2012, pp. 125-136.

[6] A. K. Maji, F. A. Arshad, S. Bagchi, and J.S. Rellermeyer, “An

empirical study of the robustness of inter-component communication in

Android”, in Proceedings of the 42nd IEEE/IFIP International
Conference on Dependable Systems and Networks, 2012, pp. 1-12.

[7] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y.
Le Traon, “Effective inter-component communication mapping in

android: An essential step towards holistic security analysis”, in

Proceedings of the 22nd USENIX Security Symposium, 2013.

[8] M. Ko, Y. J. Seo, B. K. Min, S. Kuk, and H. S. Kim, “Extending UML

Meta-model for Android Application”, in Proceedings of the IEEE/ACIS

11th International Conference on Computer and Information Science
(ICIS), 2012, pp. 669-674.

[9] F. T. Balagtas-Fernandez, and H. Hussmann, “Model-driven
development of mobile applications”, in Proceedings of the 23rd

IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2008, pp. 509-512.

[10] A. Armando, G. Costa, and A. Merlo, “Formal modeling and reasoning

about the Android security framework”, in Proceedings of the 7th
International Symposium on Trustworthy Global Computing, 2013, pp.

64-81.

[11] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, “Modeling and enhancing
Android’s permission system”, in Computer Security–ESORICS, 2012,

pp. 1-18.

[12] Y. Jing, G. J. Ahn, and H. Hu, “Model-based conformance testing for

android”, in Proceedings of the 7th International Workshop on Security

(IWSEC), 2012, pp. 1-18.

