

ICCMATT: Modeling, analysis, and test case generation of

inter-component communication in Android

Ajay Kumar Jha and Woo Jin Lee

School of Computer Science and Engineering, Kyungpook National University

Daegu, Republic of Korea

ajaykjha123@yahoo.com, woojin@knu.ac.kr

Abstract: Android applications are composed of components that may interact with each other to

accomplish a task. Moreover, a component of one application can also communicate with a

component of another application. Inter-component communication is an integral part of Android

applications. Incorrect implementation of inter-component communication can cause serious

reliability and security issues. This paper presents a conceptual model that represents the inter-

component communication at a higher abstraction level. It also presents a completely automated

tool that extracts the model from the source code. The extracted model can be used for analyzing

inter-component communication at a higher abstraction level. The tool also generates executable

test cases from the extracted model. Finally, the tool generates a security report indicating

vulnerable inter-component communication. Overall, the tool assists developers in mitigating

reliability and security issues caused by errors in implementing inter-component communication.

Keywords: Android applications, inter-component communication, modeling, test case generation,

security analysis

1. Introduction

An Android application can utilize the functionalities or services offered by other applications

while still giving the impression of a single, seamless application, which means developers don’t

have to develop all the functionalities by themselves. Instead, they can use a large number of

services offered by other applications. For example, if a developer needs to provide a map-based

service in her restaurant application then she can utilize the service offered by the Google map

application. The approach provides flexibility in developing applications by utilizing existing

services. However, it enhances the complexity of developing an application in the form of inter-

application communication, which may not only result in error prone applications but also result

in high-security risk applications [1, 2, 3, 4]. Our previous studies [5, 6] have identified several

developer mistakes in implementing inter-application communication that result in serious

reliability and security issues.

Android applications are composed of components. A component-based system has both

advantages and disadvantages. While it’s easier to develop a component, it’s extremely difficult

to integrate the components. Moreover, the components in an application may interact with each

other to accomplish a task, which significantly increases the complexity in designing interface for

intra-application communication. Although most of the Android applications are small in size with

less than 10 components, the Google Play store has a significant number of large applications. Our

empirical study [5] on 13,944 applications from the Play store shows that 49% of the applications

have more than 10 components. Furthermore, 17 of the applications have more than 200

components each. Implementing intra-application communication for a large number of

components is a cumbersome and error prone task, for example, the bug #84 in Yalp Store

application [7] and the bug #13 in Pinwheel Messenger application [8] cause the applications to

crash. These reported bugs are caused by starting an activity component from outside of an activity

context without setting the FLAG_ACTIVITY_NEW_TASK flag.

While the errors in implementing inter-application communication result in both reliability and

security issues, the errors in implementing intra-application communication result in only

reliability issues. In this paper, we refer both inter-application and intra-application

communication as inter-component communication (ICC) unless specified. The complexity of

ICC that includes state and event management of components and lack of expertise in developers

are the leading causes of reliability and security issues in Android applications [9, 10, 11]. A

solution is to develop and adopt automated software engineering practices for application

development to produce secure, high-quality mobile applications [12], especially model-based

software engineering techniques can significantly reduce the complexity. However, regardless of

the recent advancement in tools and techniques for testing Android applications [13], there is a

lack of tools and techniques for testing ICC in Android applications.

In this paper, we present a conceptual model to represent the ICC in Android applications. One

of the benefits of conceptual modeling is to help the stakeholders better understand a specific real-

world domain and enhance communication among them [14]. In-line with this benefit, the main

purpose of this work is to reduce the complexity of testing and analyzing ICC by better

understanding and representing the domain. Although the model can be either designed from

requirement specification document or extracted from source code, we have developed an open

source Eclipse plugin tool named ICCMATT (ICC Modeling, Analysis, and Testing Tool) [15]

that extracts an ICC graph from the source code. The extracted ICC graph provides a complete

picture of intra-application and inter-application communication performed by an application.

Developers can find ICC vulnerabilities, particularly unprotected exported components and

communications that may leak sensitive data, by looking at the ICC graph. Besides extracting the

ICC graph, the tool automatically generates executable test cases and a security report. We have

developed an algorithm that generates test cases from the ICC graph. The generated test cases can

be executed to identify reliability issues caused by errors in implementing ICC. The security report

provides information on two kinds of vulnerabilities: the name of the exposed components that

may need permission-based protection and the inter-application communication that may leak

sensitive data. A preliminary version of this work has been published in a short paper [16].

The main contributions of this paper can be summarized as follows:

 Presents a novel conceptual model for inter-component communication in Android.

 Presents a test case generation algorithm that generates test cases from the model and presents

a security analysis algorithm that reports vulnerable ICC.

 Presents an open source tool called ICCMATT that automatically extracts an ICC graph from

the source code. The tool also generates executable test cases from the extracted graph.

Moreover, the tool generates a security report indicating vulnerable ICC.

 Evaluates efficiency and effectiveness of the ICCMATT on 90 active and open source Android

applications.

The rest of the paper is organized as follows. Section 2 briefly describes the background on

ICC and security in Android applications. It also presents related works. Section 3 presents the

conceptual modeling of inter-component communication. Section 4 and 5 present the security

analysis algorithm and the test case generation technique, respectively. Section 6 presents the

implementation of the ICCMATT. The evaluation results of ICCMATT and threats to validity are

discussed in Section 7. Finally, the paper concludes in Section 8 with future directions.

2. Background and related works

2.1 Inter-component communication

Android applications are built using four types of components: activities, services, broadcast

receivers, and content providers. An activity represents a single user screen with which users

interact. Services are generally used to perform long-running background tasks with no interaction

from the users. Broadcast receivers handle the system-wide broadcast events that may originate

from the system or applications. Content providers manage access to the database through content

URI that uniquely identifies its data set.

The components of an application may interact with each other to accomplish a task. The

interaction is performed through a message passing technique using an intent. Except for the

content provider components, all other components interact using an intent, which is an abstract

description of an operation to be performed. The intent encapsulates various optional and

mandatory attributes such as a target component name, an action to be performed, data to be acted

on, a category describing additional information about the target component, key-value pairs that

carry extra data, and flags functioning as metadata for the intent [17]. Intents can be categorized

mainly into explicit and implicit intents. An explicit intent specifies a target component name that

receives the intent, whereas an implicit intent does not specify a target component name. Instead,

it specifies the desired operation. Android selects the target component that supports the desired

operation during run-time [17]. There is one more type of intent called pending intents that act as

a wrapper for explicit or implicit intents. The pending intents are used to perform an operation at

a future event. An application creates a pending intent and hands it over to another application that

later performs the predefined task on the source application. It is most-widely used for notification

and alarm services.

The components of an application are declared in an Android manifest file, which is a

configuration file in the application. Broadcast receiver components can also be declared in the

source code. The manifest file is the most important resource for analyzing communication

behavior of components. Developers specify communication behavior of a component by setting

its various attributes in the manifest file. For example, if a component is declared with exported

flag set to true then the component can perform inter-application communication otherwise it can

only perform intra-application communication. The flag’s default value depends on the presence

or absence of an intent filter. An intent filter [17] advertises capability of a component to handle

an implicit intent. If there is even a single intent filter then the component is exposed to another

application otherwise it is confined within the same application. The intent filter also determines

whether the component can communicate explicitly or implicitly. The presence of an intent filter

specifies that the component can communicate implicitly otherwise only explicit communications

are allowed. A component willing to accept an implicit intent must declare an intent filter with the

same attributes as declared in the implicit intent. More details on inter-component communications

can be found in [1].

2.2 Security in Android

Security in Android is implemented at both system and application levels. At the system level,

Android uses the sandboxing technique, which creates a virtual isolated execution environment.

The resources required to execute an application, for example, Dalvik Virtual Machine [18], file

system, memory, etc. are granted exclusively to the application. The approach largely prevents

malicious activities. However, at the application level, an Android application sometimes needs to

make holes in the isolation wall created by the sandboxing technique to communicate with the

outside world through different mediums such as network, shared file, etc. It may also

communicate with other Android applications through inter-application communication

mechanism using intents. These communications create holes in the isolation wall that are

exploited by malicious applications to perform malicious activities on benign applications. Thus,

regardless of the existence of the sandboxing technique at the system level, Android needs

protection at the application level and it uses the permission-based security for that purpose.

In Android, a permission can be assumed as a label that is placed on a sensitive object. If an

application needs to access the sensitive object then it has to acquire the label first. There are two

types of sensitive objects in Android. The first one is shared resources such as contact address that

is protected by system defined permissions. For example, if an application needs to access the

contact address then it has to declare the “READ_CONTACTS” permission and users have to

grant the permission to the application. The second type of sensitive object is an application’s

components. Android applications are built using components that can be exposed to third-party

applications. The exposed components are highly vulnerable to attacks; therefore, they need to be

protected with developer-defined custom permissions. An application willing to access the

exposed components must declare the custom permissions. For example, if a component C of an

application A is protected with “MY_PERMISSION” permission then another application has to

declare the same permission “MY_PERMISSION” in its manifest file to access the component C

of the application A. Users must grant the permission to the application during install-time or

runtime depending on the Android version. More details about Android security can be found in

[19, 20, 21].

2.3 Related works

Inter-component communication in Android applications has been extensively studied for

security analysis [1, 3, 10, 11, 22, 23, 24, 25, 26, 27, 28]. Most of the existing techniques in this

stream focus on data and control flow analysis [1, 3, 22, 23, 24, 27] because Android applications

may leak sensitive data during inter-application communication. TaintDroid [22] tracks privacy-

sensitive data by tainting sensitive data and then logging the data during an application execution.

It raises a flag if any sensitive data outflows from the application. However, TaintDroid does not

support taint tracking on IPC that takes place through intents, which is the most frequently used

IPC mechanism in Android. EPICC [24] finds vulnerabilities in ICC by connecting components

both within an application and among applications. It extracts all the exit points of an application

that can send intents then it determines the value of the intent by using string analysis and

Interprocedural Distributive Environment (IDE) analysis. Finally, it determines the possible

targets or entry points based on the value of the intent. A more precise version of EPICC has been

presented in IC3 [25]. IC3 performs composite constant propagation to calculate the precise value

of intent at exit points, which reduces the number of false positive. IccTA [3] detects privacy leak

in an intent-based IPC mechanism by modifying the source code of the application. It leverages

the existing tools EPICC [24] and Flowdroid [27] to perform the task. ComDroid [1] detects ICC

vulnerabilities by analyzing components and intents. It generates a warning if a component is

exposed and protected with no permission or weak permission. ComDroid also issues a warning

when it detects an implicit intent being sent with weak or no permission. DroidChecker [23] uses

inter-procedural control flow graph searching and static taint checking to detect exploitable data

paths. Similar to ComDroid, it first checks for vulnerable components by examining the manifest

file, which are then further analyzed for capability leak detection by using taint propagation in the

interprocedural control flow graph. Although these techniques provide valuable information for

closing security loopholes, the techniques work on very low-level abstraction. It’s often

cumbersome to work on such a low-level abstraction unless the technique is completely automated.

Even state of the art [22, 23, 27] in this category fails to completely serve its purpose due to the

failure to capture Android specific inter-application communication mechanism effectively.

Meanwhile, there is a lack of model-based techniques that can analyze ICC in Android

applications. Model-based techniques are helpful not only in analyzing at a higher level of

abstraction but also during entire software engineering processes. Some initiations have been taken

towards a model-based approach in engineering mobile applications. Ko et al. [29] extended the

UML to represent specific features of Android applications, and Balagtas-Fernandez et al. [30]

proposed a model-driven approach to develop mobile applications. Although these model-based

approaches reduce the complexity in the development process, these techniques do not address the

specific issues of ICC. However, formal model-based techniques [31, 32] that focus on the security

aspect of Android applications have been proposed. Armando et al. [31] introduced a framework

for defining an application in terms of components, manifest, and namespace. Then, they presented

a formal semantics for describing computations in the model. Fragkaki et al. [32] developed a

framework to perform a formal analysis of Android-style permission. Although it mainly focuses

on permission, it also addresses some of the issues of ICC. A model-based conformance testing

framework has been presented in [33]. It first extracts a formal model of ICC and then generates

test cases from the extracted model.

In contrast to existing techniques, ICCMATT resolves complexity by providing a graphical

model of ICC. On top of the model, it provides testing and security analysis techniques. Besides

ICCMATT tool, the paper provides a conceptual model of ICC that can be designed from a

requirement specification document. The designed model can be used during entire application

development process. The importance of this model may not be significant for small applications.

However, for complex applications, the model can play a vital role in producing high-quality

secure applications. While modeling and test case generation techniques including ICCMATT tool

are novel contributions of this paper, the algorithm used for security analysis is similar to

ComDroid [1]. However, our approach provides more information in the form of an ICC graph

that assists developers in making correct security decisions.

3. Inter-component communication Modeling

Conceptual modeling is both art and science. Art in the sense how well the graphical

representation of the model facilitates different kinds of communication among stakeholders and

science in the sense how well the model can be utilized in different engineering processes. To

excel in both art and science of conceptual modeling, one has to deeply understand the domain

that the model represents.

3.1 Formal representation of the model

Although it is not necessary to formalize a conceptual model before designing, explicit

formalization can avoid misunderstandings. It can also help in verifying the model. The proposed

model is composed of nodes and edges in which components are represented with nodes while

intent and intent filters are represented with edges.

DEFINITION: The ICC model is represented with a 2-tuple (N, E), where N represents all the

nodes; and E represents all the edges. N = Activities ⋃ Services ⋃ BR ⋃ TC ⋃ L ⋃ SC, where

Activities is a set of activity components defined in the manifest file, Services is a set of service

components defined in the manifest file, BR is a set of broadcast receiver components defined in

the manifest file and declared dynamically in the source code, TC is a set of components from

third-party applications, L is an application launcher, and SC is a set of shortcuts for the

application. E = <s, t, i> | <s, t, f> where iI, fF, s is a source component, t is a target

component, i is an intent, f is an intent filter, I is a set of intents in the application, and F is a set

of intent filters in the application.

Based on the formal definition, we will build the conceptual model. Conceptual modeling

specifies and describes the major design metaphors and analogies employed in the design, the

concepts the system exposes to users, the relationships between these concepts and the mappings

between the concepts and the task-domain [34]. We will explore these artifacts of conceptual

modeling in the context of the small but important domain of ICC in Android applications.

3.2 Components representation

Components of an Android application are represented by rectangles in the ICC model. The

annotations in the rectangles differentiate the component types as shown in Figure 1. We have

used a <componentType: componentName> annotation format, which represents the component

type and its name respectively. Furthermore, we have used short names for component types as A,

S, and BR for activity, service and broadcast receiver respectively. In this paper, we present a

conceptual model of ICC that takes place through intents. Content provider components do not

interact through intents; therefore, Figure 1 does not include the graphical representation of the

content provider component.

Figure 1. Components representation.

The component name and its type are undisclosed in some ICC for example, the target and the

source component respectively are unknown when an application sends and receives implicit

intents. We represent the unknown source and target components by pseudo-components as shown

in Figure 1. Specifically, a pseudo-component represents a component of a third-party application

that can be system resources, system applications, or user applications. The pseudo-components

are identified uniquely as Sn where n is a non-zero natural number. Unlike Java-based applications,

Android applications may contain multiple entry points, which are declared as a launcher or

shortcuts in the manifest file. These entry points are represented with special nodes as shown in

Figure 1. Logically, implicit communications also create entry points that are represented with

pseudo-components.

In this paper, we categorize ICC into three different types based on the types of intents involved:

explicit communication, implicit communication, and pending communication. Moreover, we

illustrate the modeling concept through a running example shown in Figure 2. The code in the

running example has been taken from an open source Android application named AppAlarm. For

brevity, the figure shows only relevant code fragments. The running example has three components:

an activity named AlarmList, a service named AalService, and a broadcast receiver named

SnoozeWakeupReceiver. These three components communicate with each other through intents to

perform certain tasks.

Figure 2. Running example from AppAlarm application.

3.3 Modeling an explicit communication

An explicit communication is a communication among components that takes place through

an explicit intent. Modeling explicit communication is relatively a trivial task. Here, we have two

communicating entities in the form of components and a medium in the form of an intent through

which components communicate. The component that passes the intent is referred as a source

component and the component that receives the intent is referred as a sink component. The

association between a source and a sink component is represented by a directed edge from the

source to the sink component.

A component may communicate with several other components through different intents

containing different attributes. In the ICC model, each intent is assigned a unique identity In where

n is a non-zero natural number. An intent is represented by a directed edge from a source to a sink

component. The running example in Figure 2 has two explicit intents. One intent originates in

AlarmList activity that starts AalService service and another originates in SnoozeWakeupReceiver

broadcast receiver that starts AalService service. The communication through intents I1 and I2 in

Figure 3 represents explicit ICC model for the running example. It is important to mention that the

communication within an application should be always explicit to avoid any security risk [17].

Modeling explicit communication may not be that much important for security analysis. However,

it is important for other software engineering processes such as testing.

3.4 Modeling an implicit communication

An implicit communication is a communication among components that takes place through

an implicit intent. Similar to the explicit communication, an implicit communication has two

communicating entities that are components and a medium that is an intent. However, unlike an

explicit intent, an implicit intent does not declare a sink component. It is determined dynamically

by an intent resolver using a matching technique [17]. The intent resolver finds the sink

components by matching the intent’s attributes with the attributes of the intent filter bound to

possible sink components. Altogether, there are four entities in an implicit communication: a

source component, a sink component, an implicit intent, and an intent filter. We represent and

define the relationship among these entities through the ICC model.

While establishing an implicit communication with a third-party application by sending an

implicit intent, a developer doesn’t have any knowledge of the third-party application such as

component name and intent filter. A developer creates an implicit intent that encapsulates the

operation to be performed and then sends the implicit intent in the wild. Although it’s possible to

identify the applications that can handle the specified operation, there are not any possible ways

to identify the name of the sink component other than through reverse engineering the application.

Here, the unknown sink component is represented by a pseudo-component in the ICC model. In

the running example, AlarmList activity starts an activity implicitly. The communication through

the intent I3 in Figure 3 represents the implicit communication. The ICC model does not

differentiate between an implicit and an explicit intent while assigning the unique identity. The

identity of both explicit and implicit intents is treated as a global property in an application.

However, the graphical representations clearly differentiate between the intents. The sink

component of an implicit intent must be a pseudo-component as shown in Figure 3.

There is another kind of event in an implicit communication. An application can receive

implicit intents sent by third-party applications. Here, both source and sink components are

unknown because an implicit intent originates from a third-party application and it does not declare

a sink component. However, each intent filter in an application represents a possible entry point

for an implicit intent; therefore, a pseudo-component for each intent filter declared in the

application represents a source component in the model. Although an implicit intent does not

declare a sink component, probable sink components can be determined by checking the

components against which the intent filter has been declared. In this kind of event, the association

between the source and sink components is represented by an intent filter instead of an implicit

intent. The intent filters are identified uniquely by Fn where n is a non-zero natural number. It is

important to note here that the launcher and the shortcut discussed in Section 3.2 are declared

through intent filters; therefore, these entities will be represented by replacing the pseudo-

component with the launcher or the shortcut symbol.

Intent filters for activity and service components are declared in the manifest file whereas intent

filters for broadcast receivers can be declared inside the manifest file and the source code; therefore,

both the source code and the manifest file need to be analyzed to determine the events that receive

implicit intents from third-party applications. A fragment of the manifest file declared by the

AppAlarm application is shown in Figure 4. It has two intent filters declared against AlarmList

activity component. The intent filter containing action as MAIN and category as LAUNCHER

indicates that AlarmList is the main entry point of the application. Another intent filter indicates

that AlarmList can accept implicit intents from third-party applications. Including these implicit

communications in the running ICC model results into the model shown in Figure 3.

Figure 3. Modeling explicit and implicit ICC for the running example.

Figure 4. Fragment of the manifest file from AppAlarm application.

3.5 Modeling a pending communication

A pending communication is a communication among components that takes place through a

pending intent. It can be clearly separated into two parts: an application sends a pending intent to

a third-party application and the third-party application executes the predefined task on the source

application through a wrapped explicit or implicit intent.

In the first part where an application sends a pending intent to a third-party application, a source

component can be easily identified and the third-party application receiving the pending intent that

acts as a sink component can also be easily identified. Here, the sink component is temporarily

represented by a pseudo-node as shown in Figure 5(a). The pending intent is represented by a

directed edge from a source to a sink component and it is identified uniquely by Pn where n is a

non-zero natural number.

In the second part, the third-party application executes the predefined task through the intent

wrapped inside the pending intent. The wrapped intent may be an explicit or an implicit intent.

Here, the sink component of the first part becomes the source component. The directed edge is

represented by a wrapped explicit or implicit intent. A sink component is represented by an actual

component or a pseudo-component depending on the wrapped explicit or implicit intent

respectively as shown in Figure 5(b). To simplify the ICC model, these two parts are merged into

a single construct as shown in Figure 5(c). Here, the source component is represented by the

component that sends the pending intent and the sink component is represented by the component

that receives the intent wrapped inside the pending intent. The edge is represented by the pending

intent. The running example has one pending intent in AalService component. Including the

pending communication in the running ICC model results into the model shown in Figure 6.

Figure 5. Modeling a pending communication.

Figure 6. Modeling pending ICC for the running example.

The model in Figure 6 provides a complete picture of ICC for the running example. In addition

to ICC, the model provides various information about the application and its security issues. One

can observe that the example application has components: one activity, one service, and one

broadcast receiver. AlarmList activity is the main component and it can receive intents from third-

party applications; therefore, a developer should ascertain that there is no security risk. The

AlarmList activity can also send an intent to third-party applications; therefore, a developer should

check for privacy leaks. ICC in Android applications can be modeled using the four basic

constructs presented in Sections 3.3, 3.4, and 3.5. We have tried to keep the conceptual ICC model

as simple as possible while providing all the required functionalities, which is the basic

requirement for any conceptual model [34].

3.6 Adding contextual information

Although the information incorporated into the ICC model in Sections 3.3, 3.4, and 3.5 can

reduce the complexity during various engineering processes, some development phases such as

testing and analysis may require additional information such as context. Context-sensitive methods

greatly reduce the effort required in isolating the bugs or problems during testing and analysis.

Since context information can’t be included during the design phase, we excluded the information

while formalizing the model in Section 3.1. To include the context in the formal ICC model of

Section 3.1, the definition of the edge needs to be extended, which now becomes: E = <s, t, i, c>

| <s, t, f, c> where iI, fF, cC, c is a context, and C is a set of contexts in an application.

An intent is delivered from a source to a sink component as an argument through a method call.

Here, context refers to the method’s calling context that is the method in which an intent delivery

method has been called. A context is represented by an edge between a source and a sink

component. An implicit communication has two kinds of events: an application sending intents to

third-party applications and an application receiving intents from third-party applications. When

an application sends intents, the method’s calling context can be easily identified from the source

code. However, when an application receives intents, the context can’t be identified because the

source code of the third-party application is not available. In this case, the method that receives

the implicit intent is used as a context because the receiving method may be affected by the

communication. A pending communication can have several contexts such as the context that

passes the pending intent to third-party applications, the context that passes the wrapped intent

from third-party applications, and the context that receives the wrapped intent. We use the method

that passes the pending intent to a third-party application as a context. Including the context

information in the running ICC model results into the model shown in Figure 7.

Figure 7. Modeling context for the running example.

 As shown in Figure 7, the communication between Launcher and AlarmList and the

communication between S2 and AlarmList use onCreate as a context. These both communications

are implicit in which AlarmList receives intents from third-party applications. According to the

defined rule, the method that receives the intent is used as a context. To understand the use of

onCreate method instead of other methods available in the AlarmList component, we have to

understand the life cycle of the component. When an activity component is started using an intent,

system calls onCreate method that receives the intent. Similar to the activity component, the model

uses onCreate and onReceive for service and broadcast receiver components, respectively.

4. Security analysis

In this paper, security analysis is restricted to ICC. Since intra-application communication does

not create any security issues, the security analysis is further restricted to inter-application

communication that takes place through intents, which can create two kinds of security issues:

vulnerable components can be exploited to perform certain tasks that couldn’t have been allowed

to perform under normal circumstances and an application can leak privacy data to malicious

applications. We present a security analysis algorithm in Figure 8 that generates warnings under

both circumstances.

Figure 8. Security analysis algorithm.

An Android application exposes its components for inter-application communication. In

addition to benign applications, the exposed components can also be accessed by malicious

applications if they are not protected, which creates security risks. Developers can protect the

exposed components using permissions, which other applications must acquire before accessing

the components. The mechanism restricts access to the exposed components to only known

applications. However, developers may fail to protect the exposed components [28]. If an exposed

component is not protected with a permission then the security analysis algorithm (line 3-7) shown

in Figure 8 generates a warning. However, there is one exception to this rule. Launcher and

shortcut communications are generally considered safe; therefore, the algorithm does not generate

warnings for these communications. Broadcast receiver components can also be declared in the

source code that needs to be protected with permissions. If an unprotected broadcast receiver is

found in the source code then the algorithm (line 8-12) generates a warning.

Privacy data leak is one of the major concerns among Android application users. Data can be

leaked mainly through certain API calls such as API calls for sending SMS and performing

network operations and intents during inter-application communication. Here, the discussion is

limited to the intent-based privacy data leaks. Various kinds of data including privacy data can be

added to an intent using method calls such as putExtra and putExtras. Developers must be careful

in adding sensitive privacy data to an intent, especially in the case of implicit intents. Explicit

intents can be received by only known applications whereas implicit intents can be intercepted by

malicious applications. The security analysis algorithm (line 13-19) shown in Figure 8 identifies

implicit intents that call putExtra or putExtras method and warns developers that a component

may be leaking privacy data through a particular intent. The security report generated by the

algorithm for one of the applications named OpenSudoku is shown in Table 1.

Table1. Security report for OpenSudoku application.

Application Name: OpenSudoku

Components that send intent to other apps with extra data: None

Intents that carry extra data to other apps: None

Components that receive intents from other apps and are not protected by permissions:

SudokuEditActivity, FileImportActivity, ImportSudokuActivity, SudokuImportActivity

Intent filters used by unprotected components: F2, F3, F4, F5

Table 2. Comparison between security analysis algorithms of ComDroid and ICCMATT.

 ComDroid ICCMATT

Target  DEX files  Source Code

Exported

components

without protection

 Component types included:

activity, service, broadcast

receiver, content provider

 Considers a component

protected if the permission

used has protection level

signature or

signatureOrSystem.

 Component types included:

activity, service, broadcast

receiver

 Considers a component

protected if the permission

used has protection level

normal, dangerous,

signature, or

signatureOrSystem.

Intents without

specific targets

 Generates a warning for each

implicit intent

 ICC graph shows the intents

without specific targets

(implicit intents).

 Does not explicitly generate

warnings.

Intents with data

 Generates a warning for an

implicit intent with data

 Flow sensitive, intra-

procedural static analysis

 Generates a warning for an

implicit intent with data

 Flow insensitive, intra-

procedural static analysis

The security analysis algorithm presented in Figure 8 is similar to ComDroid [1]. However,

there are some significant differences in approach as shown in Table 2. Our goal in this paper is

not to merely reproduce the existing algorithm but to present the security information to developers

in visual abstractions. To achieve the goal, we integrate key security information into the ICC

model. In Section 3.2, we represented components using the annotation <componentType:

componentName>. We extend the annotation as <componentType: componentName>[E][P],

where [E] and [P] represent exported and protected components respectively. Similarly, each intent

is appended with data information as In[D], where In represents intent identity and [D] indicates

that extra data is present in the intent In. Developers can analyze vulnerable components and intents

using these key information in the ICC model, for example, the ICC graph shown in Figure 11 for

OpenSudoku application shows that none of the exported components are protected with

permissions.

5. Test Case generation

Most of the existing model-based test case generation techniques in Android focus on GUI

testing [35, 36, 37, 38, 39], while our technique mainly focuses on ICC. There are some existing

testing techniques [2, 26, 40] that focus on ICC but they are not model-based and work on low-

level abstraction. There is also another significant difference. The techniques [2, 40] define a single

ICC event as a test case, whereas our technique includes multiple ICC events as a test case. The

reason is very simple. Components in an application may interact in a sequence and it’s important

to capture the sequence of ICC events in order to test the communication behavior properly. For

example, if the ICC between AlarmList and S1 in Figure 7 is tested in isolation then it may not

produce a correct result because predecessor ICC between S2 and AlarmList that may affect all of

its successor ICC has not been taken into account.

5.1 Test case generation algorithm

The proposed ICC model contains nodes and edges. Launcher, shortcuts, components, and

pseudo-components (entry points for implicit intents and exit points for implicit intents) are

represented by nodes. Intents, intent filters, and context are represented by edges. The aim is to

obtain a sequence of end-to-end ICC events that means from one of the entry points to one of the

exit points of the model. Each such sequence of ICC events represents a test case. Entry points and

exit points are represented by entry nodes and exit nodes respectively. Entry nodes are those nodes

through which a user can enter into the application. Launcher, shortcuts and entry node for implicit

communication are the entry nodes in the model. Exit nodes are those nodes through which a user

can jump to a third-party application or no further communication through an intent is allowed.

However, an exit node can communicate to itself through an intent. Exit nodes for implicit

communication and the components that do not send an intent to other components are the exit

nodes in the model.

Here, we further clarify entry nodes and exit nodes in terms of an ICC graph and then define

pre-conditions and a post condition for generating test cases from the ICC graph. An ICC graph G

is represented with a 2-tuple (N, E), from Section 3.1. Entry nodes in the ICC graph G are EN,

where ENN. For each entry node i in EN, (N-ENi)ENi does not exist in G. Exit nodes in the

ICC graph G are EX, where EXN. For each exit node j in EX, EXj(N-EXj) does not exist in G.

The test cases can be generated only if the ICC graph G satisfies the pre-conditions: all nodes N

in G must be directly or indirectly reachable from one of the entry nodes in EN and all nodes N,

except exit nodes EX, in G must be directly or indirectly reachable to one of the exit nodes in EX.

The test case generation terminates when it satisfies the post-condition: all the generated test cases

combined must contain all edges in E at least once. If we take the ICC graph in Figure 7 as an

example then we have LAUNCHER and S2 as entry nodes and S1 as an exit node. Test cases can’t

be generated from the ICC graph because it fails to satisfy the pre-condition. Nodes AalService

and SnoozeWakeupReceiver can’t reach to an exit node (S1) from any of the entry nodes

(LAUNCHER and S2). However, AalService has other outgoing edges in the real application.

The ICC graph generated through the proposed modeling technique has several properties.

First, the graph may be disconnected. Second, the graph may be a multigraph with parallel edges.

Third, the graph may contain several entry and exit nodes. Fourth, the graph may be cyclic. And

fifth, the graph may contain loops (pseudograph). Considering all these properties, we have

proposed a test case generation algorithm shown in Figure 9. The test case generation algorithm

uses both systematic and random approaches. The combined approach is better than systematic or

random approaches [41] because systematic approaches may not mimic the real scenarios and

random approaches may not cover enough scenarios.

As shown in Figure 9, the test case generation algorithm takes an ICC graph as input and

generates a file containing test cases as output. The algorithm terminates when all the edges of the

graph are visited at least once (line 7). Since we intend to take end-to-end ICC events as a single

test case, the algorithm first picks up an entry node and starts the test case (line 8, 12 and 13). The

test case terminates when it reaches to one of the exit nodes (line 14). The algorithm traverses from

an entry node to an exit node by choosing an edge at a time randomly with some guidance (line

14-44). The algorithm first checks for all the unvisited outgoing edges of a node. If it finds an

unvisited edge then it selects the edge (line 17-21) and if it does not find an unvisited edge then it

checks for the edges that have not been visited in the current test case. If it also does not find an

unvisited edge in the current test case then it selects an edge randomly from all the visited edges

(line 23-24). However, if it finds unvisited edges in the current test case then it selects an unvisited

edge randomly (line 26).

Once an edge has been selected, the algorithm adds the edge and the target node of the edge in

the current test case (line 36-37). The algorithm adds the selected edge in the test case to

differentiate among the parallel edges. If the selected edge has not been previously visited then it

is marked as a visited edge (line 39-41). Now, the target node of the selected edge acts as the new

source node (line 38). If the source node is one of the exit nodes then the test case terminates

otherwise the process of selecting an outgoing edge repeats. Once the test case terminates, the

algorithm checks it for an unvisited edge. If it finds an unvisited edge in the test case then the

algorithm writes the test case to a file (line 45-47). Since the algorithm uses a random technique,

there are chances that the test case may not contain an unvisited edge. The test case that does not

contain an unvisited edge is simply discarded.

Figure 9. Test case generation algorithm.

The algorithm for selecting exit nodes (line 5) fails when a node has a single outgoing edge to

itself in an ICC graph. If the node is selected as an exit node at the start of the test case generation

algorithm then the outgoing edge to itself will not be covered in the test case due to which the

algorithm uses a dynamic approach. If the immediate predecessor edge visited in the test case is

same as the selected edge and the source node has a single outgoing edge then the algorithm (line

30-34) selects the source node as an exit node and terminates the test case.

The test cases generated by the algorithm is not executable in its original form; therefore, we

modify the generated test cases to make them executable. For example, one of the test cases

generated by the algorithm from the ICC graph shown in Figure 11 of OpenSudoku application is

LAUNCHERF1/onCreateFolderListActivityI8/onListItemClickSudokuListActivityI17/p

laySudokuSudokuPlayActivityI10/onOptionsItemSelectedGameSettingsActivity. The test

case can’t be executed in its current form because it lacks two vital elements. It does not model

the life cycle events of the components and it does not include method call sequence from the start

of the component to the context where an intent is delivered to another component. For example,

in the test case, SudokuListActivity starts SudokuPlayActivity through an intent I17 by calling

playSudoku method but the test case does not indicate method call sequence for the playSudoku

method in SudokuListActivity. Table 3 shows the steps performed to make the test case executable

and the resulting test case in each step.

Table 3. Steps for making test cases executable.

Steps Resulting Test Case

ICC graph

traversal
LAUNCHERF1/onCreateFolderListActivityI8/onListItemClickSudo

kuListActivityI17/playSudokuSudokuPlayActivityI10/onOptionsItemSel

ectedGameSettingsActivity

Incorporating

life cycle

events

LAUNCHERF1FolderListActivityonCreateonStartonResumeo

nListItemClick/I8SudokuListActivityonCreateonStartonResumepl

aySudoku/I17SudokuPlayActivityonCreateonStartonResumeonOp

tionsItemSelected/I10GameSettingsActivity

Removing

unnecessary

life cycle

events

LAUNCHERF1FolderListActivityonCreateonStartonListItemClic

k/I8SudokuListActivityonCreateonResumeplaySudoku/I17Sudoku

PlayActivityonCreateonResumeonOptionsItemSelected/I10GameSet

tingsActivity

Incorporating

method call

sequence

LAUNCHERF1FolderListActivityonCreateonStartonListItemClic

k/I8SudokuListActivityonCreateonResumeonContextItemSelected

playSudoku/I17SudokuPlayActivityonCreateonResumeonOptionsIte

mSelected/I10GameSettingsActivity

 We first modify the generated test cases to incorporate life cycle events. A component’s life

cycle is implemented through callback methods. The execution sequence of the callback methods

depends on the component type and how the component is started or stopped. Table 4 shows the

execution sequence of callback methods for each component type, for example, if an activity

component is started using startActivity then the component’s onCreate, onStart, and onResume

callback methods are executed in sequence. The example of resulting test case after incorporating

life cycle events is shown in Table 3. This step naively inserts callback methods depending on

component types and intent delivery methods. However, a component is not required to implement

all the callback methods. Therefore, the next step removes the callback methods that have not been

implemented by the component, resulting in test cases with the proper order of life cycle events.

Table 4. Execution sequence of callback methods for different types of components.

Target

Component Type

Intent Delivery Methods Execution Sequence of Callback

Methods

Activity startActivity, startActivityForResult,

getActivity, getActivities

onCreate, onStart, onResume

Activity setResult onRestart, onStart, onResume,

onActivityResult

Service startService, getService onCreate, onStartCommand

Service bindService onCreate, onBind

Service stopService onDestroy

Broadcast sendBroadcast, getBroadcast onReceive

Finally, we generate method call sequence for each method (context of ICC graph) present in

the test case. The returned call sequence is appended to the test case. If there are multiple paths of

call sequence then only one call sequence path is selected because our goal is to execute the method

that triggers ICC. For the example test case shown in Table 3, we generate method call sequence

for onListItemClick, playSudoku, and onOptionsItemSelected methods. The methods

onListItemClick and onOptionsItemSelected are not called by any other methods therefore, they

are not modified in the test case. However, the method playSudoku is called by

onContextItemSelected and onListItemClick methods that in turn are not called by any other

methods. Here, we have two different paths for executing playSudoku method but we take only

one path and modify the test case as shown in Table 3.

The resulting test cases are executable and can identify various reliability issues including

issues caused by improper state management, which is one of the major cause of bugs in Android

applications [9]. However, we do not provide a test execution technique in this paper. There are

further steps required to automatically execute the resulting test cases, particularly input generation

and test automation, which we intend to do in future. Existing techniques [42, 38] can execute our

test cases but the tools are not available for public use. AppIntent [42] is the best-suited technique

that performs guided symbolic execution to generate inputs and then automates the test execution

using InstrumentationTestRunner [43].

5.2 Test case coverage criterion

It is important to evaluate the adequacy of the obtained test suite. The test suite obtained

through the proposed model-based test case generation technique should adequately address the

critical section of the target domain. Coverage criteria are most-widely used for evaluating the

adequacy of a test suite. In this paper, we propose an intent and intent filter (I-IF) coverage criterion

that can be used to measure the adequacy of the test suite obtained from the proposed model. In I-

IF coverage criterion, each intent and intent filter should be covered at least once. The percentage

of I-IF coverage is calculated by dividing the total number of intents and intent filters covered by

the model with the total number of intents and intent filters associated with all the components of

an application. The resulting value is multiplied by 100.

I − IF coverage (%) =
Total number of intents and intent filters covered by the model

Total number of intents and intent filters in components of an application
× 100

The I-IF coverage is basically a branch coverage criterion because intents and intent filters are

represented by edges in the model. Components in the above equation represent all the component

types except content provider. Remember, the test case generation algorithm terminates only when

all the edges are covered that does not mean it provides 100% coverage because the ICC graph

may not have modeled all the ICC events of an application. The I-IF coverage represents the

percentage of intents and intent filters covered from source code. There are several reasons for

selecting the I-IF coverage criterion. An intent is an important entity because it may carry

unexpected data from an entry node to other nodes that can cause unexpected behavior. An intent

filter acts as a constraint against receiving implicit intents; therefore, it is important to stop

unexpected data flowing inwards at the first place. There are other important entities in the model

such as entry nodes and exit nodes for implicit intents. Entry nodes are the points through which

an application can get unexpected data causing unexpected behavior. Since the test case generation

algorithm covers all the intents and intent filters present in the model, the entry and exit nodes will

be automatically covered.

6. ICCMATT implementation

Conceptual models are primarily built during design phase from the specification document.

Its main purpose is to directly or indirectly assist stakeholders in completing the development task.

Due to the current development practices of Android applications, it is very difficult to obtain the

requirement specification document; therefore, we have developed a tool named ICCMATT that

extracts an ICC graph from the source code instead of building a tool to model ICC from the

specification document. Moreover, the tool also generates test cases and a security report. The

primary goal of the tool is to assist developers in analyzing ICC during application development.

Figure 10. High-level design of ICCMATT.

ICCMATT is an open source Eclipse plug-in tool [15] written in Java. The high-level design

of ICCMATT is shown in Figure 10. It takes an application’s source code as input and generates

three different files as outputs: a text file containing all the test cases, another text file containing

a security report, and a GraphML [44] file containing an ICC graph. Since the target users of the

tool are application developers, we chose to work at source code level. ICCMATT consists of five

major modules: manifest parser, source code parser, ICC graph generator, test case generator, and

security report generator. Manifest parser and source code parser modules extract required data

from the application that are later used by other modules. An ICC event has a source node, a target

node, an intent or intent filter, and a context. All these entities forming a single ICC event are

identified and stored in a structured format that later simplifies the tasks of generating an ICC

graph and test cases through the ICC graph generator and the test case generator modules

respectively. A security report is also generated from the extracted data through the security report

generator module. Some of the data required for security report are stored along with entities of

ICC, while some data are stored separately.

ICCMATT takes project name as input and parses the manifest file using DOM parser. It

collects name and type of all the components declared in the manifest file, which is later used to

identify the components. The component names are also utilized later by the source code parser

module to parse only those class files that match to the component names, which reduces the

execution time of the tool. The tool also checks for protection against the components while

parsing the manifest file. It checks whether a component is protected by a permission and stores

the data, which is later utilized by the security report generation module for security analysis. The

final task of the manifest parser module is to collect and store data of intent filters. For each intent

filter declared against a component inside the manifest file, it stores a source, a target, an intent

filter, and a context. A pseudo-component with a unique identity is stored as a source. The unique

identity is generated by the tool. The component against which the intent filter has been declared

is stored as a target. The tool generates and stores a unique identity for each intent filter. A context

is decided based on the type of the component against which the intent filter has been declared.

The tool assigns onCreate, onCreate, and onReceive as a context for activity, service, and

broadcast receiver components respectively. In an application, a launcher and shortcuts are

declared through intent filters. If the manifest parser finds such intent filters then it stores

LAUNCHER or SHORTCUT depending upon the type as source name of the pseudo-component,

instead of a unique identity.

Source code parser module that extracts most of the data required by other modules is the main

module of ICCMAAT. It uses AST Parser [45] to extract the data from the source code. The

component names extracted by the manifest parser module are used to identify and parse only

those files that represent components. The files representing the components are fed into the source

code parser module one at a time. The module takes the source code inside a method as a unit of

processing. Rather than parsing all the source code inside a file and then processing it, the module

parses and processes the code inside a method and then proceeds to another method within the file.

ICC takes place through intents that contain various information such as the name of the source

and target components that are required to generate an ICC graph. The source code parser module

checks for the intent instantiation code inside a method. It also checks for the methods declaring

an intent as a return type because an intent can be instantiated in other than a component class and

then passed to a component class through method calls. In such cases, the module finds the class

where the intent has been originally instantiated by generating method call sequence and then

process the intent instantiation code. An intent can be instantiated in six different ways using six

different public constructors as shown in Table 5. The module checks all types of constructors

used for instantiating an intent except the copy constructor defined in number 2. If it finds an intent

instantiation code then it differentiates between an explicit and an implicit intent using the type of

constructor. The constructor number 5 and 6 explicitly declare a target component in the form of

a component class; therefore, the module can easily identify the intents as explicit intents. The

remaining constructors do not explicitly declare a target component; therefore, the intents are

identified as implicit intents if and only if the intents do not set a target component by invoking

one of the public methods listed in the last column of Table 5. Due to technical limitations,

currently, the module can identify and process only setClass and setClassName methods, which

are the most frequently used methods. If the module finds setComponent or setPackage being

invoked by an intent, it ignores and places that intent into “not covered” list.

Table 5. Public constructors and methods for an intent.

Number Public constructors for intent Public methods

1 Intent() setClass (Context packageContext,

Class<?> cls)

2 Intent(Intent o) setClassName (Context

packageContext, String className)

3 Intent(String action) setClassName (String

packageName, String className)

4 Intent(String action, Uri uri) setComponent (ComponentName

component)

5 Intent(Context packageContext, Class<?>

cls)

setPackage (String packageName)

6 Intent(String action, Uri uri, Context

packageContext, Class<?> cls)

For each implicit intent, the module stores a source and a target component. The class

representing the component in which the implicit intent has been instantiated is stored as a source

component, whereas a pseudo-component with a unique identity is stored as a target component.

Similar to an implicit intent, the module stores a source and a target component for each explicit

intent. However, finding a source component of an explicit intent is not straight forward. One

widely used practice in Android applications development is the use of context object [46], which

is used for starting components, among various other purposes. The public constructors or methods

of an intent use the context object representing an activity or a service component as a source

component. When a class name of a component or this keyword representing the current

component is directly passed as a context object, the module stores the name of the component as

a source component. Meanwhile, a context object can also be created in another class and then

passed to the constructors or methods. In such a case, the module resolves the context object by

finding the component representing the context object by constructing a call graph. If the module

could not resolve the context object then it completely ignores the intent and places the intent into

“not covered” list. Moreover, an application can also be used as a context object. In such a case,

the class representing the component in which the explicit intent has been instantiated is stored as

a source component. In the case of an explicit intent, a target component is explicitly set through

public constructors or public methods. The module checks the last argument of the constructors or

methods for a class name representing a component and stores that as a target component.

The source code parser module checks for the intent instantiation code and finds a source and

a target component as described above. If it correctly identifies a source and a target component

then it checks for the methods that can deliver the intent from the source to the target component.

If it finds any one of the intent delivery methods listed in Table 4 and the intent that has been

instantiated is same as the intent that has been used in the method then it assigns and stores a

unique identity for the intent. In the case of intent delivery methods getActivity, getActivities,

getService, and getBroadcast, the intent is identified and stored as a pending intent. An intent can

be used for other than ICC; therefore, the module may not find any intent delivery methods listed

in Table 4. In such a case, the module removes the stored source and target components of the

intent and places the intent into “not covered” list.

The source code parser module needs to collect one more entity called context to complete an

ICC graph. The module parses the source code of a method as a unit. If the module finds an intent

instantiation code in a method then the method is used as a context. An intent can also be

instantiated in a method and returned to another method where the intent is delivered to a target

component. Here, the method from where the intent is delivered to a target component is used as

a context. Along with all the aforementioned tasks, the source code parser module performs the

task of identifying dynamic broadcast receivers. It checks for the code that invokes the

registerReceiver method. If it finds the code then it stores a pseudo-component with a unique

identity as a source component, a broadcast receiver component with a unique name as a target

component, an intent filter with a unique identity, and onReceive method as a context. Although

the module has collected all the data required for an ICC graph and test cases generation, it needs

to collect more data for security analysis. Before collecting a context, the module checks whether

the intent invokes putExtra or putExtras method. The module stores the information, which is later

utilized for security report generation.

Data extracted by the manifest parser and the source code parser modules are used by the ICC

graph generator, the test case generator, and the security report generator modules to generate an

ICC graph, test cases, and a security report respectively. The task of generating an ICC graph is

trivial because all the necessary data have already been acquired. The ICC graph generator module

populates nodes of the ICC graph from the data of source and target components. All the unique

components from both the source and target components are taken as nodes of the graph. Edges

are then populated between two nodes representing a source and a target component by taking an

intent or an intent filter and a context from the extracted data. The module uses the GraphML

writer library blueprints [47] to store the ICC graph in GraphML format. Reasons behind using the

GraphML format are its scalability and flexibility in analyzing, manipulating, and maintaining a

graph. The test case generator module generates test cases by using the algorithm and the technique

described in Section 5.1. The security report generator module generates a security report from the

extracted data using the algorithm described in Section 4.

7. Evaluation of ICCMATT

ICCMATT is a completely automated Eclipse plug-in tool. The main purpose of the tool is to

assist developers in identifying improper handling of ICC during application development. There

are no hard rules for identifying improper handling of ICC that may include common developer

mistakes. For example, a developer may perform an implicit communication instead of an explicit

communication, which invites security vulnerabilities. Similarly, a developer may leave a

component exposed to third-party applications [28]. While advised against it in general, a

developer may deliberately perform the task. Thus, only a developer who has developed the

application can make the correct decision about improper ICC. The ICCMATT tool facilitates

developers in making the decisions effectively and efficiently.

Table 6. Benchmark applications.

No. App Name Size No. App Name Size No. App Name Size

1 ADBM 10 31 k9mail 39 61 PSIAndroid 3

2 androidDreamCPU 8 32 Kaleidoscope 4 62 Rainwave 5

3 AppAlarm 17 33 KeePassDroid 16 63 Ray diagrams 6

4 AppsOrganizer 14 34 KindMind 12 64 reddit is fun 15

5 AsciiCam 7 35 L9Droid 10 65 reminders_master 10

6 Auto-Away 7 36 ListMyApps 4 66 RemoteKeyboard 7

7 Avare 19 37 LoginActivity 17 67 RingdroidSelect 3

8 BarcodeBox 4 38 MainMenuActivity 6 68 Roaming Info 4

9 BatteryFu 8 39 MainPreferences 11 69 rtl_tcpAndroid 3

10 Bitcoin Paper 4 40 MinistocksActivity 12 70 SandwichRoulette 7

11 CameraTimer 5 41 MultiPictureLiveWall 13 71 sanity 41

12 campyre 9 42 Muspy for Android 16 72 Scribbler 4

13 ChannelListActivit 10 43 NDKmolActivity 6 73 SearchDataActivity 6

14 connectbot 12 44 NewNote 9 74 SelectUserActivity 6

15 DefCol 6 45 NoteListActivity 5 75 Silent Night 6

16 DeskCon 14 46 NotificationStopwatch 4 76 Simple c25k 6

17 diasporawebclient 6 47 NSTools 4 77 SimpleDo 6

18 droidparts-battery 4 48 NWSWeatherAlerts 9 78 SplashActivity 14

19 Email Popup 5 49 OpenFixMap 5 79 STK Addon Viewer 7

20 EnvelopesActivity 4 50 OpenSudoku 10 80 SwiFTP Lib 8

21 EZ Wifi Notifica. 4 51 PasteeDroid 3 81 TimerDroid 7

22 falling for reddit 18 52 PathfinderOpenRef 5 82 TintBrowser 4

23 FeederActivity 21 53 PenroserActivity 6 83 TitleScreen 8

24 file manager 8 54 Periodical 5 84 ToDoWidget 20

25 GaAT 6 55 PeriodicTableActivity 5 85 tomdroid 8

26 GeneratorActivity 3 56 Plakate 4 86 TwistedHomeManage 5

27 gnupg-for-android 24 57 PluckLock 4 87 UPM-Android 14

28 GoogleApps 3 58 PlusMinusTimesDivid 6 88 Vanilla Music 17

29 Ham 6 59 portal-timer 3 89 VoiceNotify 4

30 HungarianRings 3 60 PrettyGoodMusicPlaye 7 90 VPlug 3

The tool provides vital information to developers in the form of an ICC graph and a security

report. It is up to the developers to make correct decisions. However, the generated test cases can

be executed to identify reliability issues caused by incorrect implementations of ICC. In this

section, we evaluate efficiency and effectiveness of ICCMATT in generating an ICC graph, a

security report, and test cases. We also evaluate the adequacy of the generated test cases through

the I-IF coverage criterion.

We evaluated ICCMATT tool on 90 active and open source Android applications listed in Table

6. The size column in Table 6 represents number of components declared by the application in the

manifest file. Size in terms of number of components is more relevant than the number of lines of

code for ICC evaluation. We selected all the benchmark applications from F-Droid [48], which is

a repository of free and open source Android applications. We browsed F-Droid during June 2015

and downloaded all those applications that were hosted on GitHub. This criterion gave us 473

applications from which we removed those applications that were either not active or contained

less than three components. The remaining applications were imported in Eclipse. Some of the

applications could not be imported due to errors. Finally, we removed those applications that had

less than three intents, which gave us the final benchmark size of 90 applications. The evaluation

was performed on Windows 7 OS with Intel Core i5 processor on 8 GB RAM. Eclipse Juno was

used as an IDE.

7.1 Evaluation of ICC graphs

One of the outputs generated by ICCMATT is an ICC graph in GraphML format. We evaluated

completeness and correctness of the generated ICC graph for each benchmark application. The

evaluation results are shown in Table 7. Completeness represents the percentage of ICC events

extracted in the ICC graph from the source code. Correctness represents the percentage of correct

ICC events in the ICC graph.

In most of the cases, as indicated by the completeness column in Table 7, ICCMATT

effectively extracted an ICC graph from the source code. The reasons behind extraction of

incomplete ICC graphs are due to the limitations of ICCMATT. Being a static analysis tool, it

can’t resolve intents dynamically, for example, arguments passed in an intent object at runtime or

an intent object instantiated by the ternary expression condition ? new intent : new intent. The tool

also can’t resolve setComponent or setPackage used for explicitly setting target component names

as described in Section 6. Finally, if the tool fails to resolve a context or fails to match an intent at

intent instantiation point and in the intent delivery method then the tool does not extract the ICC

event. Since the tool discards the ICC events that it can’t resolve properly, most of the extracted

ICC graphs are accurate, as indicated by the correctness column of Table 7. Inaccuracies in the

extracted ICC graphs are only caused by false positive of extra data present in the intent. In all the

inaccurate cases, extra data is added to an intent depending on some conditions, which the

ICCMATT tool fails to detect.

The ICC graph generated by ICCMATT for OpenSudoku application is shown in Figure 11.

Currently, the tool cannot directly open GraphML file to view the ICC graph. There are several

tools available in the market that can be used for this purpose such as Gephi [49] and yEd [50].

Gephi is an open source tool but it can’t currently display parallel edges. yEd is not an open source

tool but it is freely available and it has all the properties required to view the ICC graph. We used

yEd to view the graph. There are some minor shortcomings in the ICCMATT. It does not generate

the shape defined for Launcher and Shortcut; therefore, it uses names LAUNCHER and

SHORTCUT respectively. It generates all the nodes in a single shape. We manually changed the

shape of the components to rectangle in Figure 11. It also generates solid lines for all the nodes.

We changed that too manually from solid to dotted lines in case of pseudo-components.

Table 7. ICC graph evaluation.

App

No.

Complete

ness

Correct

ness

App

No.

Complete

ness

Correct

ness

App

No.

Complete

ness

Correct

ness

1 100 100 31 85 100 61 100 100

2 100 100 32 100 100 62 85 100

3 98 97 33 91 100 63 14 100

4 81 100 34 92 100 64 94 100

5 100 100 35 100 94 65 72 100

6 100 95 36 100 100 66 100 100

7 76 100 37 93 100 67 89 100

8 100 93 38 100 100 68 100 100

9 100 100 39 78 96 69 89 100

10 75 100 40 100 96 70 63 100

11 100 100 41 96 100 71 98 100

12 69 100 42 89 100 72 83 100

13 100 100 43 82 100 73 100 100

14 100 100 44 100 100 74 100 100

15 100 100 45 100 100 75 100 100

16 89 100 46 100 100 76 100 100

17 100 100 47 78 100 77 100 100

18 83 100 48 95 100 78 93 100

19 91 100 49 100 100 79 100 86

20 67 100 50 100 91 80 95 100

21 100 100 51 100 100 81 100 100

22 75 100 52 100 100 82 100 100

23 90 100 53 76 100 83 92 100

24 92 100 54 100 100 84 80 100

25 80 100 55 100 100 85 100 100

26 40 100 56 75 100 86 81 100

27 100 100 57 100 100 87 100 92

28 100 100 58 50 100 88 63 100

29 95 100 59 83 100 89 69 100

30 100 100 60 100 98 90 83 100

The ICC graph in Figure 11 provides a complete picture of ICC in OpenSudoku application. A

developer can find various information about the application in the graph. For example, the

application has ten activity components and FolderListActivity is the main component. The

application performs intra-application communication among its components through explicit

intents. The application also interacts with third-party applications. Four of its components are

exported and can receive intents from third-party applications S1, S2, S3, and S4. None of the

exported components are protected with permissions. The FolderListActivity component

communicates with a third-party application S5 without sending any sensitive data. All these

information at one place immensely help developers in identifying improper ICC.

Figure 11. ICC graph generated by ICCMATT for OpenSudoku application.

7.2 Evaluation of security reports

Another output generated by ICCMATT is a security report. The security report for

OpenSudoku application is shown in Table 1. Similar to ICC graphs, we evaluated completeness

and correctness of the generated security report for each benchmark application. The tool

completely and correctly generated security reports for all the applications except one. The tool

incorrectly identified an intent leaving application boundary with data in BarcodeBox application,

whereas the intent does not contain any extra data. The reason behind the false positive is described

in Section 7.1.

Figure 12. Applications with exported but partially protected components.

A developer can find vulnerable components and intents by analyzing security information

displayed in the ICC graph. The security report generated by the ICCMATT works as a

supplementary data for security analysis. As shown in Table 1, the security report generated by

0

10

20

30

40

50

60

Protected Components

Exposed Components

Total Components

ICCMATT for OpenSudoku application indicates that none of the exposed components are

protected by permissions. It also indicates that the intent I4 does not contain any data. Out of 90

benchmark applications, security reports generated by ICCMATT indicate that 25 applications do

not expose any of its components to third-party applications. In the remaining 65 applications that

expose one or more components, only 12 applications protect their components by permissions.

Even in those 12 applications, number of components protected are far less than the number of

exposed components as shown in Figure 12. The figure includes dynamic broadcast receiver

components. The security reports also indicate that 44 applications do not send any data to third-

party applications. The remaining 46 applications send data to third-party applications through one

or more intents, which does not mean these applications leak privacy data. Finding privacy data

leak would require more precise data analysis but the tool currently does not support such analysis.

7.3 Evaluation of test case generation

Third and the final output generated by ICCMATT is a file containing test cases. Evaluating

the correctness of the generated test cases does not require manual intervention. The test case

generation algorithm terminates only when all the edges of the ICC graph are covered. The

algorithm does not execute if the generated ICC graph does not satisfy the pre-conditions. Out of

90 benchmark applications, the tool could not generate test cases for eight applications as shown

in Table 8. In ADBM, KeePassDroid, AppsOrganizer, and PenroserActivity applications, some of

the nodes in the generated ICC graph could not be reachable from one of the entry nodes, whereas

in DefCol, FeederActivity, NewNote, and sanity applications, any of the exit nodes were not

reachable from some of the nodes of the generated ICC graph.

We measured the adequacy of the generated test cases for each benchmark application through

I-IF coverage criterion. As shown in Table 8, most of the applications have I-IF coverage more

than 70%. The major reasons behind missing intents by source code parser module of ICCMATT

are described in Section 7.1. Along with those reasons, the tool deliberately discards the intents

that do not represent an ICC event. In most of the discarded cases, intents were passed as arguments

in putExtra or other methods. In some cases such as FeederActivity, Muspy, and MainMenuActivity,

the tool found intents that were instantiated but not used.

Along with the coverage, we also measured number of test cases generated (NT), test cases

generation time (TGT) in seconds, and tool execution time (TET) in seconds. The tool execution

time represents the time taken by the tool to generate an ICC graph, a security report, and test cases.

The results are shown in Table 8. In most of the cases, the test case generation took less than one

second whereas the tool execution took around 1 or 2 seconds because most of the Android

applications are small sized as shown in Table 6. For complex applications like K9mail, it took

around one minute for test case generation and around two minutes for tool execution. The results

indicate that ICCMATT, being a static analysis tool, has reasonable execution time. Since the test

case generation algorithm uses a random technique, the number of generated test cases, the test

generation time, and the tool execution time may vary. Overall, the evaluation results indicate that

ICCMATT can perform its tasks effectively and efficiently.

Table 8. Test case and ICCMATT tool evaluation for benchmark applications.

App

No.

NT I-

IF

TGT TET App

No.

NT I-

IF

TGT TET App

No.

NT I-

IF

TGT TET

1 - - - 0.8 31 59 78 46.1 108.0 61 2 100 0.6 1.4

2 7 100 0.4 2.3 32 3 100 0.3 1.0 62 6 85 0.7 1.4

3 18 94 4.4 6.6 33 - - - 2.3 63 1 14 0.003 0.4

4 - - - 1.5 34 7 79 0.2 1.5 64 16 94 6.0 9.4

5 8 100 0.6 1.8 35 6 100 0.6 1.3 65 39 67 2.3 5.2

6 8 100 2.0 2.9 36 6 100 0.4 1.0 66 6 100 0.3 1.1

7 24 76 0.3 2.5 37 14 81 2.1 3.9 67 3 89 1.0 1.7

8 12 94 0.7 1.5 38 5 90 0.4 1.7 68 3 100 0.03 0.5

9 12 100 0.5 3.8 39 17 72 2.7 5.9 69 6 89 0.3 1.0

10 5 67 1.3 2.3 40 22 100 0.7 1.4 70 4 63 0.2 0.8

11 5 100 0.3 1.5 41 18 81 0.3 1.2 71 - - - 1.5

12 7 69 0.6 1.4 42 10 48 0.3 2.1 72 4 83 0.05 0.5

13 16 100 2.3 4.0 43 6 82 0.5 1.2 73 3 100 0.2 0.9

14 16 100 2.1 4.4 44 - - - 0.6 74 2 100 0.06 0.8

15 - - - 0.7 45 6 100 0.5 1.2 75 5 100 0.3 1.0

16 20 89 0.5 4.3 46 7 92 0.4 0.9 76 9 100 0.7 1.2

17 8 100 1.0 1.9 47 3 78 0.5 1.5 77 2 100 0.4 1.2

18 9 78 0.4 1.0 48 17 87 0.3 1.3 78 13 93 1.6 2.9

19 7 91 0.4 1.4 49 3 100 0.3 0.8 79 4 78 0.3 0.8

20 4 67 0.3 1.9 50 8 85 0.9 1.8 80 15 95 0.3 1.6

21 7 100 1.3 2.2 51 4 100 0.3 0.8 81 4 100 0.3 1.2

22 13 75 0.1 1.8 52 8 100 0.9 1.6 82 6 80 0.3 1.0

23 - - - 4.9 53 - - - 0.7 83 3 92 0.7 1.2

24 13 92 1.0 1.8 54 4 100 0.4 1.1 84 18 80 0.1 3.2

25 4 71 0.04 1.1 55 2 100 0.4 0.9 85 12 88 4.1 5.2

26 1 40 0.2 0.8 56 2 75 0.1 0.7 86 11 81 0.3 0.9

27 35 95 2.7 4.2 57 5 100 0.1 0.6 87 16 100 1.0 1.8

28 3 100 0.2 0.7 58 2 50 0.1 0.9 88 17 62 9.5 17.0

29 13 86 0.8 1.6 59 2 83 1.5 3.0 89 10 69 0.3 1.5

30 3 100 0.3 0.8 60 30 92 1.4 3.3 90 3 83 0.01 0.5

7.4 Threats to validity

ICCMATT has some limitations that may affect the results. The limitations are both general

and specific in nature. Being a static analysis tool, it can’t handle dynamic events, for example, a

target component name passed to an intent object during runtime. Another general problem that

the tool can’t handle is java reflection. Researchers have proposed tools and techniques to handle

reflection in Android [51, 52]. Most of the specific limitations of the ICCMATT have been

discussed in Sections 7.1 and 7.3. One major limitation of ICCMATT is that it performs flow

insensitive analysis, which means the tool does not take into account the conditional statements.

8. Conclusion and future works

In this paper, we have proposed a conceptual model to represent the ICC in Android

applications. The proposed model can be designed from the specification document or extracted

from the source code. We have developed and presented a completely automated tool to extract

the model from the source code. Moreover, the tool generates test cases and a security report based

on the respective algorithms presented in this paper. With the goal of developing high-quality

secure applications, the tool assists developers in identifying improper ICC. The tool generates an

ICC graph that presents the entire ICC of an application in a single place, which reduces the

complexity in analyzing and identifying improper ICC. The security report generated by the tool

provides supplementary but precise information about the possible security loopholes. The

generated test cases can be executed to identify reliability issues caused by incorrect ICC

implementations.

Currently, the tool does not provide support for executing the generated test cases. There are

existing techniques based on symbolic execution [42, 38] that can execute the generated test cases.

However, the techniques are inefficient; therefore, we intend to develop an efficient test case

execution technique in future.

References

[1] Chin E, Felt AP, Greenwood K, Wagner D. Analyzing inter-application communication in

Android. Proceedings of the 9th international conference on Mobile systems, applications,

and services 2011; 239-252.

[2] Maji AK, Arshad FA, Bagchi S, Rellermeyer JS. An empirical study of the robustness of

inter-component communication in Android. Proceedings of the 42nd IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN) 2012; 1-12.

[3] Li L, Bartel A, Bissyande TFDA, Klein J, Traon YL, Arzt S, Rasthofer S, Bodden E, Octeau

D, and McDaniel P. IccTA: detecting inter-component privacy leaks in android apps.

Proceedings of the 37th IEEE International Conference on Software Engineering (ICSE)

2015.

[4] Ahmad W, Kästner C, Sunshine J, and Aldrich J. Inter-app communication in Android:

developer challenges. Proceedings of the 13th Working Conference on Mining Software

Repositories 2016; 177-188.

[5] Jha AK and Lee WJ. An empirical study of collaborative model and its security risk in

Android. Journal of Systems and Software (2017).

[6] Jha AK, Lee S, and Lee WJ. Developer mistakes in writing Android manifests: an empirical

study of configuration errors. Proceedings of the 14th International Conference on Mining

Software Repositories 2017; 25-36.

[7] A bug in Yalp Store app - https://github.com/yeriomin/YalpStore/issues/84

[8] A bug in Pinwheel Messenger app - https://github.com/n8fr8/gilgamesh/issues/13

[9] Hu C and Neamtiu I. Automating GUI testing for Android applications. Proceedings of the

6th International Workshop on Automation of Software Test 2011; 77-83.

[10] Felt AP, Wang HJ, Moshchuk A, Hanna S, and Chin E. Permission Re-Delegation: Attacks

and Defenses. USENIX Security Symposium 2011.

[11] Davi L, Dmitrienko A, Sadeghi AR, and Winandy M. Privilege escalation attacks on

android. Information Security 2011; 346-360.

[12] Wasserman AI. Software engineering issues for mobile application development.

Proceedings of the FSE/SDP workshop on Future of software engineering research 2010;

397-400.

[13] Zein S, Salleh N, and Grundy J. A systematic mapping study of mobile application testing

techniques. Journal of Systems and Software 2016; 117: 334-356.

[14] Chen PP, Thalheim B, Wong LY. Future directions of conceptual modeling. Conceptual

modeling 1999; 287-301.

[15] ICCMATT. https://github.com/HiFromAjay/ICCMATT

[16] Jha AK, Lee S, Lee WJ. Modeling and test case generation of inter-component

communication in android. Proceedings of 2nd ACM International Conference on Mobile

Software Engineering and Systems (MOBILESoft) 2015; 113-116.

[17] Intent and Intent Filters. http://developer.android.com/guide/components/intents-

filters.html

[18] Dalvik Virtual Machine. https://developer.android.com/guide/appendix/glossary.html

[19] Enck W, Ongtang M, McDaniel P. Understanding android security. IEEE security &

privacy 2009; 1: 50-57.

[20] Shabtai A, Fledel Y, Kanonov U, Elovici Y, Dolev S, and Glezer C. Google android: A

comprehensive security assessment. IEEE Security & Privacy 2010; 2: 35-44.

[21] Jha AK and Lee WJ. Analysis of Permission-based Security in Android through Policy

Expert, Developer, and End User Perspectives. Journal of Universal Computer Science 2016;

22(4): 459-474.

[22] Enck W, Gilbert P, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN. TaintDroid: an

information flow tracking system for real-time privacy monitoring on smartphones.

Communications of the ACM 2014; 57(3): 99-106.

[23] Chan PP, Hui LC, Yiu SM. Droidchecker: analyzing android applications for capability

leak. Proceedings of the fifth ACM conference on Security and Privacy in Wireless and

Mobile Networks 2012; 125-136.

[24] Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Traon YL. Effective inter-

component communication mapping in android: An essential step towards holistic security

analysis. Proceedings of the 22nd USENIX Security Symposium 2013.

[25] Octeau D, Luchaup D, Dering M, Jha S, McDaniel P. Composite constant propagation:

Application to android inter-component communication analysis. Proceedings of the 37th

International Conference on Software Engineering (ICSE) 2015.

[26] Avancini A, Ceccato M. Security testing of the communication among Android

applications. 8th International Workshop on Automation of Software Test (AST) 2013; 57-63.

[27] Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Traon YL, Octeau D, and

McDaniel P. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps. ACM SIGPLAN Notices 2014; 49(6): 259-269.

[28] Kantola D, Chin E, He W, and Wagner D. Reducing attack surfaces for intra-application

communication in android. Proceedings of the second ACM workshop on Security and

privacy in smartphones and mobile devices 2012; 69-80.

[29] Ko M, Seo YJ, Min BK, Kuk S, Kim HS. Extending UML Meta-model for Android

Application. Proceedings of the IEEE/ACIS 11th International Conference on Computer and

Information Science (ICIS) 2012; 669-674.

[30] Balagtas-Fernandez FT, Hussmann H. Model-driven development of mobile applications.

Proceedings of the 23rd IEEE/ACM International Conference on Automated Software

Engineering (AES) 2008; 509-512.

[31] Armando A, Costa G, Merlo A. Formal modeling and reasoning about the Android security

framework. Proceedings of the 7th International Symposium on Trustworthy Global

Computing 2013; 64-81.

[32] Fragkaki E, Bauer L, Jia L, Swasey D. Modeling and enhancing Android’s permission

system. Computer Security–ESORICS 2012; 1-18.

[33] Jing Y, Ahn GJ, Hu H. Model-based conformance testing for android. Proceedings of the

7th International Workshop on Security (IWSEC) 2012; 1-18.

[34] Johnson J, Henderson A. Conceptual models: begin by designing what to design.

Interactions 2002; 9(1): 25-32.

[35] Takala T, Katara M, Harty J. Experiences of system-level model-based GUI testing of an

Android application. Proceedings of the 2011 IEEE Fourth International Conference on

Software Testing, Verification and Validation (ICST) 2011; 377-386.

[36] Amalfitano D, Fasolino AR, Tramontana P. A gui crawling-based technique for android

mobile application testing. Proceedings of the 2011 IEEE Fourth International Conference

on Software Testing, Verification and Validation Workshops (ICSTW) 2011; 252-261.

[37] Yang W, Prasad MR, Xie T. A grey-box approach for automated GUI-model generation of

mobile applications. Proceedings of International Conference on Fundamental Approaches

to Software Engineering 2013; 250-265.

[38] Jensen CS, Prasad MR, Møller A. Automated testing with targeted event sequence

generation. Proceedings of the 2013 International Symposium on Software Testing and

Analysis 2013; 67-77.

[39] Amalfitano D, Fasolino AR, Tramontana P, Ta BD, and Memon AM. MobiGUITAR:

Automated model-based testing of mobile apps. IEEE Software 2015; 32(5): 53-59.

[40] Sasnauskas R, Regehr J. Intent fuzzer: crafting intents of death. Proceedings of the 2014

Joint International Workshop on Dynamic Analysis (WODA) and Software and System

Performance Testing, Debugging, and Analytics (PERTEA) 2014; 1-5.

[41] Duran JW, Ntafos SC. An evaluation of random testing. IEEE Transactions on Software

Engineering 1984; (4): 438-444.

[42] Yang Z, Yang M, Zhang Y, Gu G, Ning P, and Wang XS. Appintent: Analyzing sensitive

data transmission in android for privacy leakage detection. Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security 2013; 1043-1054.

[43] Instrumentation Test Runner.

https://developer.android.com/reference/android/test/InstrumentationTestRunner.html

[44] The GraphML File Format. http://graphml.graphdrawing.org/

[45] Abstract Syntax Tree. http://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/

[46] Context. http://developer.android.com/reference/android/content/Context.html

[47] GraphML reader and writer library. https://github.com/tinkerpop/blueprints/wiki/GraphML-

Reader-and-Writer-Library

[48] F-Droid. https://f-droid.org/

[49] Gephi - The Open Graph Viz Platform. http://gephi.github.io/

[50] yEd - Graph Editor. http://www.yworks.com/en/products/yfiles/yed/

[51] Barros P, Just R, Millstein S, Vines P, Dietl W, and Ernst M. D. (2015, November). Static

Analysis of Implicit Control Flow: Resolving Java Reflection and Android Intents (T). 30th

IEEE/ACM International Conference on Automated Software Engineering 2015; 669-679.

[52] Li L, Bissyandé TF, Octeau D, and Klein J. Droidra: Taming reflection to support whole-

program analysis of android apps. Proceedings of the 25th International Symposium on

Software Testing and Analysis 2016; 318-329.

