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Abstract—Android platform provides a unique framework 

for app development. Failure to comply with the framework may 

result in serious bugs. Android platform is also evolving rapidly 

and developers extensively use APIs provided by the framework, 

which may lead to serious compatibility bugs if developers do not 

update the released apps frequently. Furthermore, Android apps 

run on a wide range of memory-constrained devices, which may 

cause various device-specific and memory-related bugs. There 

are several other Android-specific issues that developers need to 

address during app development and maintenance. Failure to 

address the issues may result in serious bugs manifested as 

crashes. In this paper, we perform an empirical study to 

investigate and characterize various Android-specific crash bugs, 

their prevalence, root causes, and solutions by analyzing 1,862 

confirmed crash reports of 418 open source Android apps. The 

investigation results can help app developers in understanding, 

preventing, and fixing the Android-specific crash bugs. 

Moreover, the results can help app developers and researchers in 

designing effective bug detection tools for Android apps. 

Keywords—Android apps, crash bug analysis, mining crash 

bugs, characterizing crash bugs 

I. INTRODUCTION  

Android is the most popular platform for mobile apps with 
more than 2.5 million apps available for download in the 
Google Play store [1]. The platform is evolving rapidly and, at 
the same time, it has become pervasive. The diversity of 
devices such as TVs, infotainment systems, smartphones, and 
tablets are operating on Android, which runs apps with diverse 
application domains including critical domains such as finance 
and health. Therefore, the reliability and security of Android 
apps are the major concerns for app users [2]. 

Researchers have proposed several testing tools and 
techniques [3, 4] to improve the quality and reliability of 
Android apps. However, developers still prefer to test their 
apps manually due to various complications in using new tools 
and techniques [5, 6]. Manual testing of Android apps requires 
developers to have extensive knowledge of both the Java 
programming language and the Android framework. 
Furthermore, they need to have extensive knowledge of the 
nature of Java and Android-specific bugs, their root causes, and 
solutions. Although Android apps are mostly written in the 
Java programming language, developers have to extensively 
implement various callback methods or APIs (Application 
Programming Interface) provided by the Android framework. 
While the information on typical bugs related to the Java 
programming language and their solutions are readily available 
for stakeholders, there is a lack of comprehensive information 

on the Android-specific bugs and their solutions. One reason 
may be the rapid evolution of the Android platform such as the 
introduction of runtime permission, which results in new 
categories of bugs. While developers’ discussion forums such 
as Stack Overflow are extremely useful in identifying and 
fixing the bugs, user-reported bugs may not have been 
discussed in the forums, which we found in several cases in 
this study. A comprehensive investigation and characterization 
of user-reported bugs of deployed apps and their solutions 
would help app developers in identifying, preventing, and 
fixing the real bugs. Furthermore, it would help researchers in 
identifying future research directions that could lead to more 
effective tools and techniques for testing Android apps. 

To address this need, we perform an empirical study by 
mining bug reports of free and open source Android apps. 
Particularly, we perform the study on only those bugs that 
manifest as crashes. Our first goal of this empirical study is to 
understand the prevalence of Android-specific crash bugs in 
Android apps. Therefore, we manually identify the Android-
specific crash bugs by analyzing 1,862 confirmed user-reported 
crash bugs from 418 open source Android apps. Our next goal 
is to characterize the identified Android-specific crash bugs. 
Therefore, we analyze the identified Android-specific crash 
bugs manually and place them in different categories based on 
their distinctive properties. Our final goal is to present the root 
causes of the Android-specific crash bugs and their solutions. 
To achieve the final goal, we analyze the identified Android-
specific crash bug reports, developers’ discussion about the 
crash bugs in the issue tracker, and the fixes implemented by 
developers. In this paper, we present the results of the 
investigations.  

The major contributions of this paper can be summarized as 
follows: 

 Performs a large-scale empirical study on user-reported 
crash bugs by mining 1,862 confirmed crash bug reports of 
418 open source Android apps. 

 Distinguishes and characterizes Android-specific crash 
bugs by analyzing the 1,862 user-reported crash bugs. 

 Presents an extensive analysis of the root causes of 
Android-specific crash bugs and their solutions 
implemented by developers in fixing the bugs. 

The rest of the paper is organized as follows. Section II 
presents related works. Section III describes our methodology 
of obtaining dataset and analyzing crash bugs. Section IV 
presents a characterization of Android-specific crash bugs and 
their root causes. Furthermore, in this section, we discuss 



different solutions implemented by developers in fixing the 
bugs. We discuss the empirical results in Section V. We 
discuss threats to validity in Section VI. Finally, the paper 
concludes in Section VII. 

II. RELATED WORK 

Researchers have performed several characterization 
studies on bugs in the Android platform and apps. Linares-
Vásquez et al. [7] performed a taxonomy of Android bugs by 
analyzing 1,230 confirmed bugs including 430 Android-
specific bugs. They also proposed a mutation testing 
framework for Android apps based on the taxonomy. Hu et al. 
[8] performed a bug mining study on 10 open source Android 
apps to understand the nature and frequency of bugs in 
Android apps. They also proposed a UI testing technique. In 
comparison to their studies [7, 8], we characterize only 
Android-specific crash bugs on a significantly large dataset. 
Furthermore, unlike their studies, we discuss the solutions 
implemented by developers in fixing the crash bugs. Fan et al. 
[9] performed a large-scale analysis of framework-specific 
exceptions in Android apps. Similar to our study, they 
characterize the framework exceptions and their fixes. 
However, the characterization in this study is substantially 
different from their study. We believe both works can be 
complementary to each other in thoroughly understanding the 
Android-specific crash bugs. Bhattacharya et al. [10] 
performed an empirical study on the bugs in the Android 
platform and 24 open source Android apps to understand the 
quality of bug reports and bug-fixing process. They also 
characterized security bugs. However, they do not discuss 
other types of Android-specific bugs and their solutions. Maji 
et al. [11] performed a characterization study on failures in 
Android and Symbian platforms. They also discussed the 
solutions implemented by developers in fixing the bugs. Unlike 
their study of platform-specific failures, we target Android-
specific crash bugs in apps. Joorabchi et al. [12] performed an 
empirical study to characterize non-reproducible bugs in six 
different projects of desktop, web, and mobile domains. Unlike 
their study, we target only fixed Android-specific crash bugs. 
Pathak et al. [13], Liu et al. [14, 15], and Shahriar et al. [16] 
performed characterization studies on performance bugs in 
Android apps. In comparison to these studies [13, 14, 15, 16], 
our study targets all types of Android-specific crash bugs in 
deployed apps. Since the Android platform is evolving rapidly, 
the bugs originating from the features introduced in the later 
versions of the platform such as runtime permission and 
fragment have not been discussed by the most of the existing 
works. Furthermore, the existing works do not discuss the 
solutions implemented by developers in fixing various types of 
Android-specific crash bugs. 

Researchers have also proposed several tools and 
techniques to detect [7, 8, 17, 18, 19, 20], reproduce [21, 22, 
23, 24, 25, 26, 27], and repair [28] bugs in Android apps, 
which is not our goal in this paper. However, results of this 
study can help developers and researchers in designing 
effective bug detection tools for Android apps. 

III. METHODOLOGY 

In this study, our goal is to investigate and characterize 
only Android-specific crash bugs. Therefore, in this section, we 

first present how we collected the data for our study, then we 
separate Android-specific crash bugs from Java-related crash 
bugs. We considered a bug as an Android-specific crash bug if 
the bug stems from the misuse of Android framework or APIs. 

A. Data Collection 

Our study requires analysis of source code and bug reports. 
Therefore, we used F-Droid [29], a repository of free and open 
source Android apps, to select apps for this empirical study. 
We collected URLs of all the apps stored on the F-Droid 
repository and selected only those apps that are hosted on 
GitHub. This criterion resulted in 1,560 apps. Then, we 
performed a filtering process on the selected apps. First, we 
removed 171 apps that had no reported issues or bugs. Our 
study requires the analysis of solutions implemented by 
developers in fixing the bugs. Therefore, we further removed 
179 apps that had no closed issues, resulting in a dataset of 
1,210 apps. 

In this study, we target only those bugs that manifest as 
crashes. Therefore, we searched the closed issues of each app 
with three different keywords: crash, exception, and force 
close. Among 1,210 apps, the search results did not produce 
any bug reports in 648 apps. Next, we manually analyzed the 
crash reports of the remaining 562 apps. However, we could 
not determine the root causes of the crash bugs in 144 apps due 
to one of the following reasons: the issue was closed without 
discussing the fix or providing the fix patch, the bug was 
already fixed in version X or will be addressed in the next 
release, the bug could not be reproduced, the bug was caused 
by compile related issues, the bug was in the development 
branch or debug version, the bug was not related to the app, the 
bug was resolved by re-installing the app or clearing the app 
data, the bug was not valid anymore, and the bug will not be 
fixed. After excluding the 144 apps with inconclusive crash 
reports, we had the final dataset of 418 apps that also had 
several inconclusive crash reports. However, each app in the 
final dataset had at least one conclusive crash report. 
Therefore, we excluded the inconclusive crash reports from the 
apps in the final dataset, resulting in total 1,862 confirmed 
crash reports in 418 apps. 

Among the final dataset of 418 apps, 289 apps are available 
in the Google Play store, which have various download ranges 
as shown in Fig. 1. Overall, our dataset has diverse categories 
of apps including apps from the Google Play store and third-
party app stores.  

 
Fig. 1. Apps download ranges in the Google Play store. 



B. Android-specific Crash Bugs 

 In this paper, our goal is to investigate and characterize 
only Android-specific crash bugs. Therefore, we manually 
analyzed the 1,862 confirmed crash reports using an open 
coding approach [31, 32] and differentiated between Java-
related crash bugs and Android-specific crash bugs. The result 
provides information on distribution or prevalence of Android-
specific crash bugs in Android apps. We identified 672 crash 
bugs as Android-specific crash bugs, which is 36% of the total 
crash bugs in our dataset. The result is similar to the result 
obtained by Mario Linares-Vásquez et al. in their study [7]. 
However, their dataset is smaller with 430 Android-specific 
bugs among 1,230 total confirmed bugs. In our dataset, the 
Android-specific crash bugs are distributed in 265 apps among 
418 total apps. We have made the dataset available to enable 
other researchers to access and reproduce our study [30]. 

 

IV. CHARACTERIZATION OF ANDROID-SPECIFIC 

CRASH BUGS 

To characterize the Android-specific crash bugs, the first 
and the second author independently analyzed the bug reports 
including bug description, developers’ discussion about the 
bug, and solutions provided by the developers. The authors 
then independently categorized the bugs following an open 
coding approach [31, 32]. The disagreement of placing a bug in 
a category (6% of the bugs) was resolved through discussion 
between the first and the second author. The identified 
Android-specific crash bugs were placed in ten different 
categories as shown in Fig. 2. The figure shows the number of 
apps with the number of Android-specific crash bugs in each 
category. For example, the dataset has 59 permission-based 
security crash bugs in 46 apps. We have provided the complete 
data of Android-specific crash bugs in each category for 
interested readers [30]. 

 
Fig. 2. Characterization of Android-specific crash bugs. 

A. App State and UI Bugs 

Android apps are composed of four types of components: 
activities, services, broadcast receivers, and content providers. 
An Android app state is basically representative of its 
components state, which is implemented through various 
callback methods provided by the platform. Moreover, 

Android apps are developed mainly with the UI-centric 
approach in which everything is built around the UI.  Our 
dataset has 165 crash bugs in 103 apps caused by the incorrect 
implementation of app state and UI. Furthermore, our dataset 
has several other crash bugs related to app state and UI. 
However, we have placed them in separate categories 
considering how the crash bugs manifested during the 
execution of the apps. The distribution of the app state and UI 
crash bugs according to their origin in different parts of apps is 
shown in Fig. 3. App components such as activity, service, 
receiver, and provider have the largest number of crash bugs. 
However, in comparison to fragments that are part of activity 
components, the number of crash bugs in all the app 
components are not significantly high. Clearly, developers 
need to carefully implement fragments. A Context [33] that 
represents the global app state and a View that represents a 
user interface combined constitute 41% of the app state and UI 
crash bugs. However, considering their frequent usage during 
app development, the result is not surprising. 

 
Fig. 3. Distribution of app state and UI bugs according to their origin. 

Activity: An activity component that represents a single 
user screen is the most frequently used component in Android 
apps [34]. It has mainly four states: running, paused, stopped, 
and restored. The state transitions are handled through various 
callback methods. Our dataset has 24 crash bugs in 21 apps 
caused by incorrect handling of the state transitions. For 
example, accessing app or system resources in incorrect 
callback methods, not implementing onNewIntent() callback 
method when relaunching an activity while at the top of the 
activity stack, and not checking isFinishing() when dismissing 
dialogs after the activities that opened the dialogs have 
finished. Developers have fixed the crash bugs by accessing 
resources in appropriate callback methods, implementing new 
callback methods, and catching exceptions. 

Service: Service components are generally used to perform 
long-running background tasks such as playing music. A 
component of an app can start a service component or bind to a 
service component. When a service component is started by 
calling startService(), the started service keeps running until it 
stops itself by calling stopSelf() or another component stops it 
by calling stopService(). However, if a component binds to a 
service by calling bindService(), the service runs as long as the 
component is bound to it. The bound service can interact with 
the component by offering a client-server interface until the 
component unbinds it by calling unbindService(). Our dataset 
has 13 crash bugs in 12 apps caused mostly by incorrect 
implementations of different callback methods. For example, 
calling unbindService() on the services that are no longer 

36% of the crash bugs are Android-specific crash bugs. 



bound, interacting with the services that are no longer bound, 
and cleaning up resources that no longer exist before 
destroying or stopping the services. 

Broadcast Receiver and Content Provider: Broadcast 
receiver components handle broadcast events generated by the 
system and apps. A broadcast receiver component can be 
created statically by declaring it in the Android manifest file 
and dynamically by registering it in the source code through 
the registerReceiver() method. The dynamically created 
receivers must be unregistered by calling the 
unregisterReceiver() method. However, developers should be 
careful when and where to call the unregisterReceiver() 
method. Our dataset has 5 apps that call the 
unregisterReceiver() method on the receivers that have already 
been unregistered, resulting in 5 crash bugs. Our dataset has 
also 1 crash bug in a receiver and 2 crash bugs in content 
providers caused by incorrect configurations in the Android 
manifest file. 

Fragment: Starting from API level 11, fragments can be 
used to separate distinct elements of an activity, which define 
their own UI and lifecycle. Similar to activity components, 
state transitions in fragments are handled through various 
callback methods. Our dataset has 12 crash bugs in 12 apps 
caused by incorrect handling of the state transitions. 
Developers have fixed the bugs by using callback methods 
appropriately. Our dataset has also 2 crash bugs caused by 
fragments interacting with UI in incorrect states, 1 crash bug 
caused by instantiating an anonymous class fragment, and 1 
crash bug caused by inflating a fragment within a fragment, 
which is only allowed programmatically. Fragments can be 
added, removed, or replaced to/from a running activity in 
response to user interactions. Each set of changes that are 
committed to the activity is called a transaction. To prevent 
state loss, Android does not allow to commit the fragment 
transactions after the activity has saved its state. Our dataset 
has 11 apps that commit fragment transactions after the 
activities have saved their states, resulting in 12 crash bugs. 
Developers have fixed the crash bugs by prohibiting the 
commits after the activities have saved their states. Our dataset 
has also 15 crash bugs in 12 apps caused by fragments not 
attached to their host activities. Developers have fixed most of 
the crash bugs by checking isAdded() on the fragments, 
checking null or isFinishing() on the activities, and catching 
the exceptions. 

Context: In Android, a Context represents the context of 
the current state of an app or an object, which is used to access 
global information of the app environment. Furthermore, it is 
used for performing app-level operations such as launching 
activities, receiving intents, etc. A Context can represent an app 
context, an activity context, or a service context, which have 
different scopes in an app. Our dataset has 39 crash bugs in 30 
apps caused by incorrect use of the context objects. Developers 
have used various techniques to fix the crash bugs. They have 
fixed 17 crash bugs by using contexts with appropriate scope 
such as using an app context instead of an activity context, 13 
crash bugs by checking null on context objects, 5 crash bugs by 
retrieving the context correctly, 2 crash bugs by declaring the 
context with the final keyword, 1 crash bug by handling a null 
context, and 1 crash bug by using a singleton. 

View and Action Bar: The user interface for each 
component of an app is defined using a hierarchy of View and 
ViewGroup objects. Our dataset has 3 crash bugs caused by 
defining multiple parent views for a child view. The View can 
be of different types. A ListView displays items in the list. The 
data in the list are populated through an Adapter by calling 
setAdapter(). Our dataset has 4 crash bugs caused by not 
notifying ListView about the data change in the Adapter. 
Furthermore, a header can be added in the ListView by calling 
addHeaderView(). However, the header view must be added 
before setting the adapter to the ListView. Our dataset has 2 
crash bugs caused by setting adapter before adding a header 
view. An explicit view can be set in an activity using 
setContentView(). Furthermore, each activity can access 
features of its associated window through 
requestWindowFeature(). However, window features must be 
accessed before setting the content view. Our dataset has 3 
crash bugs caused by accessing window features after setting 
the content views. A view of an activity is detached from the 
window manager when the activity is destroyed. However, a 
dialog started by the activity may still be running. Our dataset 
has 3 crash bugs caused by views not attached to the window 
manager. Our dataset has 7 other crash bugs in 6 apps caused 
by incorrect handling of views such as implementing 
ActionBarContextView incorrectly, performing a user action 
before the view is retrieved, using a custom view incorrectly, 
too many nested views causing StackOverflow, and getting 
views incorrectly. In addition to the View, Android provides 
various standard UI components such as action bars. All 
activities in an app that use the default system theme have an 
action bar. Developers can also implement an action bar using 
the support library’s Toolbar class. However, an activity must 
have only one action bar. Our dataset has 4 crash bugs caused 
by using multiple action bars in an activity. 

Other: Our dataset has 8 other crash bugs in 8 apps caused 
by various app state and UI issues such as incorrect use of 
wake lock and WIFI lock, exceeding maximum cursor limit, 
and incorrect implementation of menus. 

 

 

 

 

 

B. Compatibility Bugs 

The Android platform provides several APIs and support 
libraries for app development, which makes it easier and faster 
to develop apps on the Android platform. However, due to the 
rapid evolution of the Android platform, developers need to 
update their apps frequently. Failure to update the APIs and 
support libraries in apps may result in serious compatibility 
bugs.  

Since the launch of the Android platform, it has evolved to 
API level 28 in very short duration. Providing support for all 
the API levels or even for the target API level and below is a 
non-trivial task for app developers. Our dataset has 36 apps 
that use incompatible APIs, resulting in 47 crash bugs with 

App developers should 1) use appropriate callback 

methods in the appropriate order, 2) do not commit 

fragment transactions after the activity has saved its state, 

3) check the activity has not been destroyed before 

performing operations on its fragments and dialogs, and 4) 

use contexts with the appropriate scope. 



NoSuchMethodError exceptions. Developers have fixed 46 
crash bugs by changing the implementation such as performing 
build version check in the source code before using the APIs, 
removing the APIs, or replacing the APIs. The remaining one 
crash bug was fixed by catching the exception. In addition to 
the crash bugs with the NoSuchMethodError exception, our 
dataset has one crash bug with NoSuchFieldError exception 
that was fixed by catching the exception, 3 crash bugs with 
NoClassDefFoundError exception that were fixed by using 
other classes or checking the build version, and 4 crash bugs 
with UnsupportedOperationException that were fixed by 
changing implementation or catching the exception. 

In addition to the support libraries provided by the 
platform, developers can use various external libraries or 
dependencies in apps. Our dataset has 46 crash bugs in 42 apps 
caused by libraries incompatibilities. Developers have used 
various techniques to fix the crash bugs. They have fixed 27 
crash bugs by upgrading the libraries, 5 crash bugs by 
downgrading the libraries, 3 crash bugs by removing the 
libraries, 1 crash bug by restoring a library, 1 crash bug by 
using a different class of the library, and 1 crash bug by 
upgrading a build tool version in the build.gradle file. In 
addition to upgrading, downgrading, removing, and reusing the 
libraries, developers have also fixed 8 crash bugs by providing 
workaround for the bugs in the libraries. For example, they 
have fixed 3 crash bugs by checking the build version, 1 crash 
bug by checking a null condition, 1 crash bug by implementing 
the missing feature, 1 crash bug by removing a method call, 
and 2 crash bugs by adding the required FileProvider class in 
the Android manifest file. 

Our dataset has several other crash bugs caused by APIs 
incompatibilities. Some of the notable crash bugs and their 
fixes are shown in Table 1. Our dataset has a single instance of 
each crash bug shown in the table. 
 
 

 

 

 

TABLE 1. COMPATIBILITY CRASH BUGS 

Crash Bugs Fixes 

bindService() does not support implicit 

intents starting with API 21.  

Use an explicit intent. 

Error inflating class fragment. Nested 

fragments were introduced in API 17.  

Remove nesting. 

the fragment.getlayoutinflater method 

name is a duplicate of a final method in 

class Landroid/app/Fragment.  

Rename the method for API 

26. 

android:src for image view on vector is 

not supported below API 21.  

Use app:srcCompat. 

Fragment.onAttach(Context) is not 

called by android below API 23.  

Override deprecated 

Fragment.onAttach(Activity). 

Honeycomb version 11 does not show 

title bar (has custom title bar, so 

getActionBar() returns null).  

Null check. 

Providers are by default exported below 

API 17.  

Set exported=”false” 

explicitly. 

RemoteControlClient recycles bitmaps 

on its own starting from API 19.  

Check the build version. 

C. App Resource Bugs 

App resources such as images, strings, and layouts are 

integral parts of an app.  Developers can declare the resources 

directly in the source code or they can externalize resources in 

a separate directory. However, developers are recommended 

[35] to externalize app resources in a separate directory named 

res for maintainability. Furthermore, developers can also 

provide alternate resources for specific device configurations 

by grouping them in specially-named resource directories. The 

external resources are referenced in the source code or other 

resource files using their unique resource IDs. Our dataset has 

89 crash bugs in 63 apps caused by defining or referencing 

resources incorrectly. The distribution of app resources crash 

bugs according to their origin in different types of resources is 

shown in Fig. 4. 

 
Fig. 4. Distribution of app resources crash bugs in different types of resources. 

String: A string resource provides text strings for apps. It 

can be referenced from apps code or other resource files. Our 

dataset has 5 crash bugs caused by defining string resources 

incorrectly and 4 crash bugs caused by referencing missing 

string resources or referencing resources incorrectly. A string 

resource can be provided in different languages. However, 

developers should provide a default string resource so that an 

app can fall back to the default string if the app does not 

support the requested language. Our dataset has 12 crash bugs 

caused by localizing string resources incorrectly and 1 crash 

bug caused by not providing the default string resource. 

Drawable: A drawable resource is a general concept for a 

graphic that can be drawn to the screen. It can be retrieved 

using APIs or applied to other XML resources such as layout 

using attributes. Our dataset has 10 crash bugs caused by 

accessing missing drawables or accessing drawables 

incorrectly, 3 crash bugs caused by defining vector drawables 

incorrectly, 3 crash bugs caused by applying drawable 

resources to views incorrectly, 3 crash bugs caused by 

corrupted or high-resolution drawables (PNG files), 1 crash 

bug caused by not following naming conventions while 

writing the name of a drawable resource, and 1 crash bug 

caused by using incorrect resource name while retrieving 

dynamic resource ID. 

Layout: Layout resources placed in the res/layout/ 

directory define the architecture for the UI in activities or 

other UI components. The layout resources are defined in an 

XML file that mainly contains view elements and their 

containers. Our dataset has 4 crash bugs caused by defining 

App developers should 1) check APIs support level and 

perform build version check in the source code before 

using the APIs, 2) avoid using unstable APIs and libraries, 

and 3) update APIs and libraries frequently. 



resource files incorrectly, 4 crash bugs caused by accessing 

views that have not been defined in the resource files, 4 crash 

bugs caused by using incorrect attributes or their values to 

define views or containers, 3 crash bugs caused by referencing 

resources with incorrect resource IDs, 2 crash bugs caused by 

defining the same ID for different views or containers, 1 crash 

bug caused by using a RippleView that does not support older 

versions, and 1 crash bug caused by using an incorrect 

container. 

Style and Colors: A style is a collection of attributes that 

specify the look and format for a view or window. A style 

applied to an entire activity or app instead of an individual 

view is called a theme. Our dataset has 10 crash bugs in 9 apps 

caused by setting styles incorrectly or using incompatible 

libraries for setting themes. Moreover, our dataset has 4 crash 

bugs in 4 apps caused by setting or retrieving colors 

incorrectly. 

Preference and Other: Developers can provide a setting 

screen for their apps, which is built using various subclasses 

of the Preference class declared in an XML file. Each subclass 

provides its own specialized properties and user interface. Our 

dataset has 8 crash bugs in 8 apps caused by incorrectly 

defining preferences in XML files. Our dataset has other 5 

crash bugs in 5 apps that were fixed by setting proguard rules. 

 

 

 

 

 

 

D. Permission-based Security Bugs 

Android provides a permission-based security [36] to 

protect the system and apps resources. The permission-based 

security is implemented in the Android manifest file by 

defining permissions via <permission> elements and 

protecting resources via the android:permission attribute. 

Sensitive system resources such as contacts are protected with 

the system-defined permissions, whereas sensitive app 

resources such as exported components are protected by 

defining custom permissions. Apps willing to access the 

protected system or app resources must declare the 

permissions via <uses-permission> or <uses-permission-sdk-

23> elements. The declared permissions are granted by users 

during install-time or runtime depending on the target Android 

version of the apps. Fig. 5 shows the number of crash bugs 

caused by the incorrect use of custom, system, and runtime 

permissions. Out of 59 permission-based security crash bugs, 

32 crash bugs are caused by the runtime permission that has 

been introduced in the API level 23. 

In the dataset, 21 apps access permission-protected system 

resources without declaring the respective system permissions, 

resulting in 22 crash bugs with the SecurityException. 

Developers have used various techniques to fix the crash bugs. 

For example, they have declared the missing permissions in 

the Android manifest file, caught the exception and showed an 

error message, avoided the use of the sensitive resources that 

required permissions, and performed a null check on resources 

that required permission in some Android versions. 

 
Fig. 5. Types of permission-based security crash bugs. 

In Android, developers can temporarily grant permissions 

to read and write protected content URIs by using the flags 

FLAG_GRANT_READ_URI_PERMISSION and 

FLAG_GRANT_WRITE_URI_PERMISSION, respectively. However, 

the permissions to read and write the URIs do not persist 

permanently, which may cause an app to crash. The dataset 

has 2 crash bugs caused by accessing protected content URIs 

while the temporarily granted permissions are no longer 

available. The crash bugs were fixed by setting the flag 

FLAG_GRANT_PERSISTABLE_URI_PERMISSION. 

In addition to the system permissions, developers can 

define custom permissions to protect the sensitive resources 

created by developers. Apps willing to access the protected 

app resources of another app must declare the custom 

permissions in their Android manifest files. In our dataset, one 

app protects an exported component with a custom permission 

without defining the permission and another app accesses a 

protected component without declaring the custom 

permission, resulting in 2 crash bugs. One serious drawback of 

the custom permission is that the app defining a custom 

permission must be installed prior to the app declaring the 

custom permission. Otherwise, a SecurityException is thrown. 

Our dataset has one app that crashes due to the apps install 

order. 

The resources protected with the system or custom 

permissions cannot be accessed by apps unless the 

permissions are granted by users during install-time or runtime 

depending on the target Android version. Since Android 6.0 

(API level 23), users have to grant the permissions during 

runtime. However, developers must implement the runtime 

permission [37] in the source code. Failure to implement the 

runtime permission may result in crash bugs with the 

SecurityException. In our dataset, developers have not 

implemented the runtime permission in 20 apps while 

targeting API level 23 or greater, resulting in 25 crash bugs. 

They have fixed 23 crash bugs by implementing the runtime 

permission, 1 crash bug by forcing the app to run on the API 

level 22 or below, and the remaining 1 crash bug by updating 

a library that implements the runtime permission. Our dataset 

has also 3 crash bugs in 3 apps caused by the incorrect 

implementation of the runtime permission. 

Since API level 23, users can either deny permissions 

during runtime or revoke permissions any time. Therefore, 

developers should prohibit the users from accessing the 

protected resources when the permissions are denied or 

App developers should 1) check references of the missing 

resources, 2) use appropriate resource files and naming 

conventions when defining resources, and 3) check string 

formatting when localizing string resources. 



revoked. In addition, they should show an informative error 

message to the users. In our dataset, developers have not 

prohibited users from accessing the protected resources when 

the permissions were denied or revoked, resulting in 4 crash 

bugs. They have fixed 3 crash bugs by prohibiting the users 

from accessing the resources and the remaining one crash bug 

by catching the exception. 

 

 

 

 

 

 

 

 

E. Device Orientation Bugs 

Mobile devices can be rotated to change the screen 

orientation, which needs to be reflected in the apps running on 

the devices. When a device is rotated, the Android system 

automatically reloads the running app with alternate resources 

that match the new device configuration by restarting 

(destroying and recreating) the running activity of the app. 

Furthermore, developers can retain or recreate a fragment 

instance when an activity is restarted during device 

orientation. The process may create a range of problems if the 

activity and fragment state transitions are not handled 

appropriately. Our dataset has 58 crash bugs in 48 apps caused 

by incorrectly handling apps behavior during device 

orientation. 

Developers have used various techniques to fix the crash 

bugs. They have fixed 44 crash bugs by correctly handling 

activity state transitions, correctly retaining or recreating 

fragments instances during activity restart, checking null on 

various objects, retrieving resources appropriately, and 

catching exceptions. Developers can prevent the restart of the 

running activity by declaring the android:configChanges 

attribute with the value "orientation" in the <activity> element 

of the Android manifest file, which they have used to fix 10 

crash bugs. Furthermore, if the running activity is prevented 

from the restart by setting the android:configChanges attribute 

and the device is rotated, the system calls the 

onConfigurationChanged() method, which developers can 

implement to handle the configuration change. Our dataset has 

1 crash bug caused by incorrectly handling new configuration 

in the onConfigurationChanged() method.  Moreover, 

Android allows developers to use a hard value for screen 

orientation such as portrait and landscape to fix the 

orientation. Developers have used the hard values in the 

android:screenOrientation attribute to fix 3 crash bugs. 

 

 

 

 

 

 

 

 

F. Inter-component Communication Bugs 

Except content providers, components of an app can 

communicate with each other via an intent, which is an 

abstract definition of an operation to be performed. An intent 

can be explicit or implicit based on whether it specifies a 

target component name. In addition to inter-component 

communication within an app, a component of an app can also 

communicate with a component of another app via intents. 

Inter-app communication can be performed only if the target 

component is exported. Our dataset has 49 crash bugs in 40 

apps caused by the incorrect implementation of inter-

component communication within an app and among apps. 

The types of inter-component communication crash bugs in 

the dataset are shown in Fig. 6. 

 
Fig. 6. Types of inter-component communication bugs. 

An activity component communicates with another activity 

component using one of the various forms of 

startActivity(Intent) method. It can start an activity component 

or a data URL declared in the intent, which throws an 

ActivityNotFoundException if the activity or the URL does not 

exist to run the given intent. Our dataset has 28 crash bugs in 

24 apps that throw the ActivityNotFoundException. 

Developers have used various techniques to fix the bugs. They 

have fixed 11 crash bugs by catching the exception and 

showing an error message, one crash bug by catching the 

exception and returning a fake intent to onActivityResult(), 2 

crash bugs by catching the exception and showing a custom 

URL, and 2 crash bugs by correcting the URLs passed to the 

intents. Developers have also used techniques that verify the 

existence of activities or URLs before calling the 

startActivity(Intent) method. Android allows developers to 

query the PackageManager to verify the existence of an 

activity, which has been used to fix 6 crash bugs. One crash 

bug was fixed by checking the existence of a contact URI. 

Developers have used some other techniques to fix 5 crash 

bugs such as removing the startActivity(Intent) method, using 

fully qualified class name of the activity in the Android 

manifest file, recreating the activity, removing the parallel 

request, and inverting the native activity preferences.  

The target component that receives the intent during inter-

component communication can utilize various attributes of the 

intent. However, developers should validate the attributes of 

the received intent before utilizing them. In the dataset, 

developers have not validated the received intents, resulting in 

13 crash bugs with the NullPointerException. The bugs were 

fixed by checking the null condition. 

In addition to the 28 ActivityNotFoundException crash 

bugs and 13 NullPointerException crash bugs, our dataset has 

App developers should 1) ensure that the system 

permissions are declared for each protected resource used 

in the app, 2) implement the runtime permission in the 

apps targeting API level 23 or above, and 3) prohibit users 

from accessing the protected resources when the 

permissions are denied or revoked by them. 

App developers should 1) use appropriate callback 

methods of activities and fragments in the appropriate 

order, 2) prevent restart of the activities during device 

orientation if the new configuration does not need to be 

reflected in the apps, and 3) use a hard value for the 

orientation if the app is not designed for different 

orientations. 



8 other crash bugs in 8 apps. The startActivity(Intent) method 

can be called only from an activity context, unless the intent 

has FLAG_ACTIVITY_NEW_TASK flag. In our dataset, developers 

have called the method from outside of an activity context 

without setting the flag, resulting in 2 crash bugs. In Android, 

an activity can start another activity using 

startActivityForResult() or startIntentSenderForResult() 

methods to get back a result. However, if a fragment starts an 

activity to get back a result, the result is returned back to its 

parent activity. Our dataset has 2 crash bugs caused by 

incorrectly receiving the results in the fragments. Developers 

have fixed one crash bug by returning the result to the parent 

activity and one crash bug by calling onActivityResult() with 

the super keyword in the fragment. Android imposes a 

limitation on the amount of data transferred through an intent, 

which is currently 1 Mb. Our dataset has 2 crash bugs caused 

by transferring more than 1 Mb of data through intents. Our 

dataset has also one app that performs inter-component 

communication through an implicit intent containing a bundle 

with a custom Parcelable class. However, the intent gets 

intercepted by another app that attempts to unparcel the 

bundle, resulting in one crash bug with 

ClassNotFoundException. Finally, one app in the dataset 

attempts to perform inter-app communication without 

exporting the component, resulting in one crash bug. 

 

 

 

 

 

 

G. Memory Bugs 

Android apps run on diverse categories of memory 

constraint devices. Although memory size of mobile devices is 

constantly increasing, users are also increasingly relying on 

mobile apps to perform memory intensive tasks, which may 

result in memory leak leading to crash if the apps are not 

optimized for memory usage. Our dataset has 35 apps that 

abuse memory, resulting in 49 crash bugs. 

Developers have used various techniques to fix the crash 

bugs. Android sets a hard limit on the heap size allotted for 

each app. Developers have enabled the large heap by setting 

the android:largeHeap attribute in the Android manifest file to 

fix 3 crash bugs. However, the technique does not guarantee 

an increase in the available memory if the device is 

constrained by the total available memory. Among 12 bitmap 

related memory bugs in 10 apps, developers have fixed 7 

crash bugs by downscaling images, 2 crash bugs by 

downscaling and recycling images, 1 crash bug by converting 

images to low-quality format (PNG to WEBP), and 2 crash 

bugs by discarding a library or using another image library. 

Developers have also fixed 12 crash bugs in 8 apps by 

reducing memory usage through different techniques such as 

writing data directly to a disk, clearing data periodically, 

detecting low memory situation and preventing further 

memory usage, preventing parallel processing of multiple 

events, and loading data in batches. Developers have used 

various other techniques to fix 16 memory bugs in 15 apps 

such as changing UI design, releasing UI resources, reusing 

views, preventing infinite dialog, releasing references or using 

weak references, handling files properly, refactoring source 

code, and preventing access to cache for multiple requests. 

Furthermore, developers have fixed 4 crash bugs by catching 

exceptions and 1 crash bug by catching the exception and 

decreasing maximum cache size. Android can also claim 

memory by killing an app. Our dataset has one crash bug 

caused by the side effect of the memory claim process. The 

bug was fixed by staring a service component in the 

foreground using the startForeground() method. 

 

 

 

 

 

 

H. Device and OS Bugs 

Android apps run on devices with various device 

configurations. Developers need to consider different device 

configurations while developing apps because certain features 

of apps may not be supported by some devices. Our dataset 

has 3 crash bugs in 2 apps caused by performing telephony 

services on the devices such as tablets that do not support the 

operation, 1 crash bug caused by unavailability of the external 

storage in a device, 1 crash bug caused by unavailability of the 

vibrator in a device, and 1 crash bug caused by handing 

context menu incorrectly in tablets. 

Our dataset has 4 crash bugs in 4 apps caused by the bugs 

in the Android OS. Furthermore, device vendors customize the 

Android OS for various purposes. Our dataset has 8 crash 

bugs in 7 apps caused by handling the customized OS or 

customized stock app features incorrectly in Samsung and 

HTC devices. Our dataset has also 1 crash bug caused by 

unavailability of the Android System WebView, which has 

been detached from the OS since API level 21 and 1 crash bug 

caused by unavailability of a native library in a device. 

 

 

 

 

 

I. Processes and Threads Bugs 

Each app in Android runs in a separate process. 

Furthermore, all the components of an app run in the same 

process by default. However, developers can specify a 

component to run in another process by declaring 

android:process attribute in the Android manifest file. The 

components of the same app running on different processes 

have to follow inter-process communication (IPC) rules. Our 

dataset has 2 crash bugs in 2 apps caused by the incorrect 

implementation of the IPC for the components running on 

different processes. Developers have fixed the bugs by 

changing the processes in the Android manifest file. 

App developers should 1) query the PackageManager to 

check the availability of the target component before 

calling the startActivity(Intent) method and 2) check null 

condition on an intent before performing any operations 

on the intent. 

 

App developers should 1) downscale images before using 

in the app, 2) perform recycling on the images if the app 

targets API level 10 or below, and 3) release references or 

use weak references. 

App developers should 1) check whether the device has 

the requested feature such as telephony before accessing it 

and 2) use caution when interacting with the OS or stock 

apps through APIs, especially for Samsung devices. 



When an app is launched, the system creates a thread of 

execution for the app, usually called the main or UI thread. 

Performing long-running operations on the main thread may 

block the thread, eventually leading to a crash. For example, 

an app in our dataset runs its media operation on the main 

thread, resulting in a crash bug. Furthermore, Android does 

not allow network operations to be performed on the main 

thread starting from Android 3.0. However, the behavior can 

be overridden by setting a thread policy, which is a bad 

practice. Our dataset has 6 apps that perform the network 

operations on the main thread, resulting in 6 crash bugs with 

the NetworkOnMainThreadException. Developers have fixed 

5 crash bugs by performing the network operations on the 

AsyncTask or background threads. The remaining one crash 

bug was fixed by setting a thread policy. In contrast to 

performing long-running operations, UI operations must be 

performed on the main thread. Our dataset has 9 apps that do 

not perform the UI operations on the main thread, resulting in 

9 crash bugs with two types of exceptions: 

CalledFromWrongThreadException and RuntimeException 

with the message “can't create handler inside thread that has 

not called Looper.prepare()”. Developers have fixed 4 crash 

bugs by performing the UI operations on the main thread, 3 

crash bugs by defining a handler on the main thread, 1 crash 

bug by using the AsyncTask, and 1 crash bug by removing the 

UI operation. Android imposes a limitation on the maximum 

pool size of threads, which is 128. Our dataset has one app 

that crosses the limitation, resulting in one crash bug with the 

RejectedExecutionException. The bug was fixed by using a 

handler. 

 

 

 

 

 

 

J. Back and Up Navigation Bugs 

Consistent navigation is an essential element for overall 

user experience [38]. The Up and Back buttons play a key role 

in app navigation. The Up button is used to navigate within an 

app based on the hierarchical relationships between screens, 

whereas the Back button is used to navigate through the 

history of screens in reverse chronological order. Our dataset 

has 17 crash bugs in 16 apps that are either caused by the 

incorrect implementation of the back and up navigation or 

manifested due to the back navigation. 

Back and up navigation is implemented in two steps: 1) a 

logical parent activity is specified in the Android manifest file 

and 2) NavUtils APIs are used to synthesize a new back stack. 

Our dataset has 3 apps that do not specify or incorrectly 

specify the logical parent activities in their Android manifest 

files, resulting in 3 crash bugs. Our dataset has also 2 apps that 

do not implement the NavUtils APIs, resulting in 2 crash bugs. 

Furthermore, the home screen in apps should not offer the up 

navigation. However, an app in the dataset offers the up 

navigation in the home screen, resulting in one crash bug. 

Moreover, when the back button is pressed, the system calls 

the onBackPressed() method. Its default implementation 

simply finishes the activity. However, developers can 

customize the implementation. An app in the dataset manages 

fragment’s back stack in the onBackPressed() method without 

checking the empty back stack, resulting in one crash bug. 

In addition to the back and up implementation related 

crash bugs, our dataset has 10 crash bugs in 9 apps that 

manifested due to the back navigation. In all the cases, the 

tasks performed by the apps were interrupted by back events, 

resulting in crash bugs. Developers have fixed the bugs by 

checking null on various objects, using contexts with 

appropriate scope, catching the exception, checking 

isFinishing() on an activity, and handling fragments’ state 

transitions appropriately. 

 

 

 

 

 

V. DISCUSSION 

The first goal of this empirical study is to understand the 

distribution or prevalence of Android-specific crash bugs in 

Android apps. The empirical results show that 36% (672 out 

of 1,862) of the crash bugs are Android-specific, which is 

significant number given that the Android apps are mostly 

written in the Java programming language. Therefore, app 

developers need to consider various types of Android-specific 

bugs while testing their Android apps. 

The second goal of this empirical study is to understand 

the nature of Android-specific crash bugs and their root 

causes. The Android-specific crash bugs identified in this 

study have been placed in ten different categories based on 

their distinctive properties. The app state and UI related crash 

bugs are clearly on the top of the list. Given the UI-centric 

nature of Android apps and their components with distinct 

states, the result is not surprising. Most of the bugs in this 

category are caused by implementing state transitions 

incorrectly, particularly during adverse conditions or system 

events such as an activity destruction or restart. The app state 

and UI related crash bugs also manifested during the back and 

up navigation and device orientation. While some of the crash 

bugs in these categories are caused by the incorrect 

implementation of back and up navigation and device 

orientation, most of the crash bugs manifested due to the 

adverse conditions such as interrupting tasks by pressing the 

back button and rotating devices. Most of the existing UI 

testing techniques [8, 39, 40, 41, 42] cannot detect the bugs 

because they do not handle the adverse conditions. However, 

some testing techniques [43, 44, 45, 46] have been proposed 

that consider some of the adverse conditions or system events. 

The second in the list of the highest number of Android-

specific crash bugs is the compatibility bugs. Most of the 

compatibility crash bugs are caused by using incompatible 

APIs or dependencies containing incompatible APIs. Given 

App developers should 1) follow IPC rules for the 

components of an app with different processes, 2) not 

perform long-running tasks and network operations on the 

main thread, and 3) perform UI operations on the main 

thread. 

App developers should check the tasks that can be 

interrupted by the back event leading to the 

NullPointerException and perform a null check on the 

objects appropriately. 



that the Android apps are highly dependent on APIs provided 

by the platform [47, 48], developers need to frequently update 

the APIs and support libraries in the released apps. However, 

McDonnell et al. [49] found that developers are slow in 

adopting new APIs or changes in existing APIs. It has also 

been established through an empirical study [50] that unstable 

or fault-proneness APIs impact the success of Android apps. 

Therefore, developers need to use stable APIs if possible. 

Moreover, developers can use tools [51, 52] for detecting API 

compatibility issues in Android apps.  

Permission-based security, inter-component 

communication, and app resources are other major categories 

with the Android-specific crash bugs. The permission-based 

security crash bugs are mostly caused by failures to declare 

the required system permissions and failures to implement the 

runtime permission while targeting API level 23 or greater. 

Researchers have proposed various tools [53, 54, 55] that map 

sensitive APIs to their permissions. However, there is a lack of 

tools integrated with the development environment that warn 

developers about the required permissions based on the 

sensitive APIs used in the apps. Most of the inter-component 

communication crash bugs are caused by failures to handle the 

exceptional conditions such as unavailability of the target 

components to run the given intents and extracting data from 

null intents. In addition to UI and stress testing techniques 

such as monkey [56], researchers have proposed various tools 

and techniques [57, 58, 59, 60, 61] to analyze and test inter-

component communication, which can be useful for 

developers in detecting the crash bugs. The app resources 

crash bugs are mostly caused by retrieving resources 

incorrectly or retrieving missing resources. In addition, several 

crash bugs are also caused by defining resources such as 

layout, string, drawable, and style incorrectly in XML files. 

The app resources crash bugs can be detected through UI 

testing techniques. However, there is hardly any tools 

available that specifically target app resources bugs. 

The final goal of this empirical study is to understand the 

various solutions implemented by developers in fixing the 

Android-specific crash bugs. Each category of the Android-

specific crash bugs requires specific solutions to fix the bugs, 

as discussed in Section IV. Therefore, it is difficult to 

generalize the solutions implemented by developers in fixing 

the crash bugs. However, there are some general patterns in 

fixing the crash bugs. In addition to the specific solutions 

implemented by developers in fixing the specific crash bugs, 

developers have fixed 56 Android-specific crash bugs, which 

is 8% of the total Android-specific crash bugs, by catching the 

exceptions. In contrast to our result, a study performed by 

Zhang et al. [62] on 8 popular Android apps shows that 22% 

of the bugs were fixed by adding, modifying, or refactoring 

exception handlers. However, their study included Java-

related bugs. One of the acute problems in the Java 

programming or the object-oriented programming is null-

pointer dereferencing [63]. Android inherited the same 

problem. Developers have fixed 55 Android-specific crash 

bugs by checking the null condition. In contrast to our result, 

Coelho et al. [64] found that 27.71% of the exception stack 

traces in the bug reports of Android apps contained a 

NullPointerException. However, their study included Java-

related bugs. 

VI. THREATS TO VALIDITY 

Threats to external validity relate to the generalizability of 

our results. In comparison to millions of apps available for 

download in the Google Play store, we performed the 

empirical study on a very small dataset with 672 Android-

specific crash bugs from 418 free and open source apps. 

Although the dataset is fairly large for this kind of studies, the 

results of this study may not be generalized in a larger context. 

Furthermore, we have performed the study on free and open 

source Android apps. Therefore, the results may not be 

generalized for all kinds of apps. 

Threats to internal validity relate to the methodology used 

to perform the study. Our study depends heavily on manual 

analysis, which has various limitations that may influence the 

results. We identified crash bugs by searching issue trackers 

with three different keywords: crash, force close, and 

exception. Although highly unlikely, it is possible that the 

keywords might not have been used in the crash bug reports, 

resulting in the exclusion of the crash bugs in our dataset. 

Furthermore, we manually performed the analysis to identify 

the Android-specific crash bugs, their root causes, and 

solutions, which may influence the results. However, the 

results were cross-validated to mitigate the threat. Moreover, 

we have provided all the data used in this study for interested 

readers [30]. 

VII. CONCLUSION 

In this paper, we performed an empirical study to 

understand the Android-specific crash bugs, their prevalence, 

root causes, and solutions by analyzing 1,862 confirmed crash 

reports of 418 open source Android apps. The empirical 

results show that Android apps have a significant number of 

(672 out of 1,862) Android-specific crash bugs that belong to 

ten different categories based on their distinctive properties. 

Although the Android-specific crash bugs in each category 

have specific root causes, the empirical results show that they 

mainly originate due to failure to handle special or exceptional 

cases, failure to update apps promptly when the changes are 

made in the platform, and failure to handle adverse conditions. 

Therefore, to prevent the crash bugs, in addition to handling 

exceptional cases and adverse conditions during app 

development, developers need to update apps frequently 

reflecting changes made in the platform. 
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