
Characterizing Android-specific crash bugs

Ajay Kumar Jha, Sunghee Lee, Woo Jin Lee

School of Computer Science and Engineering

Kyungpook National University

Daegu, Republic of Korea

ajaykjha123@yahoo.com, lee3229910@gmail.com, woojin@knu.ac.kr

Abstract—Android platform provides a unique framework

for app development. Failure to comply with the framework may

result in serious bugs. Android platform is also evolving rapidly

and developers extensively use APIs provided by the framework,

which may lead to serious compatibility bugs if developers do not

update the released apps frequently. Furthermore, Android apps

run on a wide range of memory-constrained devices, which may

cause various device-specific and memory-related bugs. There

are several other Android-specific issues that developers need to

address during app development and maintenance. Failure to

address the issues may result in serious bugs manifested as

crashes. In this paper, we perform an empirical study to

investigate and characterize various Android-specific crash bugs,

their prevalence, root causes, and solutions by analyzing 1,862

confirmed crash reports of 418 open source Android apps. The

investigation results can help app developers in understanding,

preventing, and fixing the Android-specific crash bugs.

Moreover, the results can help app developers and researchers in

designing effective bug detection tools for Android apps.

Keywords—Android apps, crash bug analysis, mining crash

bugs, characterizing crash bugs

I. INTRODUCTION

Android is the most popular platform for mobile apps with
more than 2.5 million apps available for download in the
Google Play store [1]. The platform is evolving rapidly and, at
the same time, it has become pervasive. The diversity of
devices such as TVs, infotainment systems, smartphones, and
tablets are operating on Android, which runs apps with diverse
application domains including critical domains such as finance
and health. Therefore, the reliability and security of Android
apps are the major concerns for app users [2].

Researchers have proposed several testing tools and
techniques [3, 4] to improve the quality and reliability of
Android apps. However, developers still prefer to test their
apps manually due to various complications in using new tools
and techniques [5, 6]. Manual testing of Android apps requires
developers to have extensive knowledge of both the Java
programming language and the Android framework.
Furthermore, they need to have extensive knowledge of the
nature of Java and Android-specific bugs, their root causes, and
solutions. Although Android apps are mostly written in the
Java programming language, developers have to extensively
implement various callback methods or APIs (Application
Programming Interface) provided by the Android framework.
While the information on typical bugs related to the Java
programming language and their solutions are readily available
for stakeholders, there is a lack of comprehensive information

on the Android-specific bugs and their solutions. One reason
may be the rapid evolution of the Android platform such as the
introduction of runtime permission, which results in new
categories of bugs. While developers’ discussion forums such
as Stack Overflow are extremely useful in identifying and
fixing the bugs, user-reported bugs may not have been
discussed in the forums, which we found in several cases in
this study. A comprehensive investigation and characterization
of user-reported bugs of deployed apps and their solutions
would help app developers in identifying, preventing, and
fixing the real bugs. Furthermore, it would help researchers in
identifying future research directions that could lead to more
effective tools and techniques for testing Android apps.

To address this need, we perform an empirical study by
mining bug reports of free and open source Android apps.
Particularly, we perform the study on only those bugs that
manifest as crashes. Our first goal of this empirical study is to
understand the prevalence of Android-specific crash bugs in
Android apps. Therefore, we manually identify the Android-
specific crash bugs by analyzing 1,862 confirmed user-reported
crash bugs from 418 open source Android apps. Our next goal
is to characterize the identified Android-specific crash bugs.
Therefore, we analyze the identified Android-specific crash
bugs manually and place them in different categories based on
their distinctive properties. Our final goal is to present the root
causes of the Android-specific crash bugs and their solutions.
To achieve the final goal, we analyze the identified Android-
specific crash bug reports, developers’ discussion about the
crash bugs in the issue tracker, and the fixes implemented by
developers. In this paper, we present the results of the
investigations.

The major contributions of this paper can be summarized as
follows:

 Performs a large-scale empirical study on user-reported
crash bugs by mining 1,862 confirmed crash bug reports of
418 open source Android apps.

 Distinguishes and characterizes Android-specific crash
bugs by analyzing the 1,862 user-reported crash bugs.

 Presents an extensive analysis of the root causes of
Android-specific crash bugs and their solutions
implemented by developers in fixing the bugs.

The rest of the paper is organized as follows. Section II
presents related works. Section III describes our methodology
of obtaining dataset and analyzing crash bugs. Section IV
presents a characterization of Android-specific crash bugs and
their root causes. Furthermore, in this section, we discuss

different solutions implemented by developers in fixing the
bugs. We discuss the empirical results in Section V. We
discuss threats to validity in Section VI. Finally, the paper
concludes in Section VII.

II. RELATED WORK

Researchers have performed several characterization
studies on bugs in the Android platform and apps. Linares-
Vásquez et al. [7] performed a taxonomy of Android bugs by
analyzing 1,230 confirmed bugs including 430 Android-
specific bugs. They also proposed a mutation testing
framework for Android apps based on the taxonomy. Hu et al.
[8] performed a bug mining study on 10 open source Android
apps to understand the nature and frequency of bugs in
Android apps. They also proposed a UI testing technique. In
comparison to their studies [7, 8], we characterize only
Android-specific crash bugs on a significantly large dataset.
Furthermore, unlike their studies, we discuss the solutions
implemented by developers in fixing the crash bugs. Fan et al.
[9] performed a large-scale analysis of framework-specific
exceptions in Android apps. Similar to our study, they
characterize the framework exceptions and their fixes.
However, the characterization in this study is substantially
different from their study. We believe both works can be
complementary to each other in thoroughly understanding the
Android-specific crash bugs. Bhattacharya et al. [10]
performed an empirical study on the bugs in the Android
platform and 24 open source Android apps to understand the
quality of bug reports and bug-fixing process. They also
characterized security bugs. However, they do not discuss
other types of Android-specific bugs and their solutions. Maji
et al. [11] performed a characterization study on failures in
Android and Symbian platforms. They also discussed the
solutions implemented by developers in fixing the bugs. Unlike
their study of platform-specific failures, we target Android-
specific crash bugs in apps. Joorabchi et al. [12] performed an
empirical study to characterize non-reproducible bugs in six
different projects of desktop, web, and mobile domains. Unlike
their study, we target only fixed Android-specific crash bugs.
Pathak et al. [13], Liu et al. [14, 15], and Shahriar et al. [16]
performed characterization studies on performance bugs in
Android apps. In comparison to these studies [13, 14, 15, 16],
our study targets all types of Android-specific crash bugs in
deployed apps. Since the Android platform is evolving rapidly,
the bugs originating from the features introduced in the later
versions of the platform such as runtime permission and
fragment have not been discussed by the most of the existing
works. Furthermore, the existing works do not discuss the
solutions implemented by developers in fixing various types of
Android-specific crash bugs.

Researchers have also proposed several tools and
techniques to detect [7, 8, 17, 18, 19, 20], reproduce [21, 22,
23, 24, 25, 26, 27], and repair [28] bugs in Android apps,
which is not our goal in this paper. However, results of this
study can help developers and researchers in designing
effective bug detection tools for Android apps.

III. METHODOLOGY

In this study, our goal is to investigate and characterize
only Android-specific crash bugs. Therefore, in this section, we

first present how we collected the data for our study, then we
separate Android-specific crash bugs from Java-related crash
bugs. We considered a bug as an Android-specific crash bug if
the bug stems from the misuse of Android framework or APIs.

A. Data Collection

Our study requires analysis of source code and bug reports.
Therefore, we used F-Droid [29], a repository of free and open
source Android apps, to select apps for this empirical study.
We collected URLs of all the apps stored on the F-Droid
repository and selected only those apps that are hosted on
GitHub. This criterion resulted in 1,560 apps. Then, we
performed a filtering process on the selected apps. First, we
removed 171 apps that had no reported issues or bugs. Our
study requires the analysis of solutions implemented by
developers in fixing the bugs. Therefore, we further removed
179 apps that had no closed issues, resulting in a dataset of
1,210 apps.

In this study, we target only those bugs that manifest as
crashes. Therefore, we searched the closed issues of each app
with three different keywords: crash, exception, and force
close. Among 1,210 apps, the search results did not produce
any bug reports in 648 apps. Next, we manually analyzed the
crash reports of the remaining 562 apps. However, we could
not determine the root causes of the crash bugs in 144 apps due
to one of the following reasons: the issue was closed without
discussing the fix or providing the fix patch, the bug was
already fixed in version X or will be addressed in the next
release, the bug could not be reproduced, the bug was caused
by compile related issues, the bug was in the development
branch or debug version, the bug was not related to the app, the
bug was resolved by re-installing the app or clearing the app
data, the bug was not valid anymore, and the bug will not be
fixed. After excluding the 144 apps with inconclusive crash
reports, we had the final dataset of 418 apps that also had
several inconclusive crash reports. However, each app in the
final dataset had at least one conclusive crash report.
Therefore, we excluded the inconclusive crash reports from the
apps in the final dataset, resulting in total 1,862 confirmed
crash reports in 418 apps.

Among the final dataset of 418 apps, 289 apps are available
in the Google Play store, which have various download ranges
as shown in Fig. 1. Overall, our dataset has diverse categories
of apps including apps from the Google Play store and third-
party app stores.

Fig. 1. Apps download ranges in the Google Play store.

B. Android-specific Crash Bugs

 In this paper, our goal is to investigate and characterize
only Android-specific crash bugs. Therefore, we manually
analyzed the 1,862 confirmed crash reports using an open
coding approach [31, 32] and differentiated between Java-
related crash bugs and Android-specific crash bugs. The result
provides information on distribution or prevalence of Android-
specific crash bugs in Android apps. We identified 672 crash
bugs as Android-specific crash bugs, which is 36% of the total
crash bugs in our dataset. The result is similar to the result
obtained by Mario Linares-Vásquez et al. in their study [7].
However, their dataset is smaller with 430 Android-specific
bugs among 1,230 total confirmed bugs. In our dataset, the
Android-specific crash bugs are distributed in 265 apps among
418 total apps. We have made the dataset available to enable
other researchers to access and reproduce our study [30].

IV. CHARACTERIZATION OF ANDROID-SPECIFIC

CRASH BUGS

To characterize the Android-specific crash bugs, the first
and the second author independently analyzed the bug reports
including bug description, developers’ discussion about the
bug, and solutions provided by the developers. The authors
then independently categorized the bugs following an open
coding approach [31, 32]. The disagreement of placing a bug in
a category (6% of the bugs) was resolved through discussion
between the first and the second author. The identified
Android-specific crash bugs were placed in ten different
categories as shown in Fig. 2. The figure shows the number of
apps with the number of Android-specific crash bugs in each
category. For example, the dataset has 59 permission-based
security crash bugs in 46 apps. We have provided the complete
data of Android-specific crash bugs in each category for
interested readers [30].

Fig. 2. Characterization of Android-specific crash bugs.

A. App State and UI Bugs

Android apps are composed of four types of components:
activities, services, broadcast receivers, and content providers.
An Android app state is basically representative of its
components state, which is implemented through various
callback methods provided by the platform. Moreover,

Android apps are developed mainly with the UI-centric
approach in which everything is built around the UI. Our
dataset has 165 crash bugs in 103 apps caused by the incorrect
implementation of app state and UI. Furthermore, our dataset
has several other crash bugs related to app state and UI.
However, we have placed them in separate categories
considering how the crash bugs manifested during the
execution of the apps. The distribution of the app state and UI
crash bugs according to their origin in different parts of apps is
shown in Fig. 3. App components such as activity, service,
receiver, and provider have the largest number of crash bugs.
However, in comparison to fragments that are part of activity
components, the number of crash bugs in all the app
components are not significantly high. Clearly, developers
need to carefully implement fragments. A Context [33] that
represents the global app state and a View that represents a
user interface combined constitute 41% of the app state and UI
crash bugs. However, considering their frequent usage during
app development, the result is not surprising.

Fig. 3. Distribution of app state and UI bugs according to their origin.

Activity: An activity component that represents a single
user screen is the most frequently used component in Android
apps [34]. It has mainly four states: running, paused, stopped,
and restored. The state transitions are handled through various
callback methods. Our dataset has 24 crash bugs in 21 apps
caused by incorrect handling of the state transitions. For
example, accessing app or system resources in incorrect
callback methods, not implementing onNewIntent() callback
method when relaunching an activity while at the top of the
activity stack, and not checking isFinishing() when dismissing
dialogs after the activities that opened the dialogs have
finished. Developers have fixed the crash bugs by accessing
resources in appropriate callback methods, implementing new
callback methods, and catching exceptions.

Service: Service components are generally used to perform
long-running background tasks such as playing music. A
component of an app can start a service component or bind to a
service component. When a service component is started by
calling startService(), the started service keeps running until it
stops itself by calling stopSelf() or another component stops it
by calling stopService(). However, if a component binds to a
service by calling bindService(), the service runs as long as the
component is bound to it. The bound service can interact with
the component by offering a client-server interface until the
component unbinds it by calling unbindService(). Our dataset
has 13 crash bugs in 12 apps caused mostly by incorrect
implementations of different callback methods. For example,
calling unbindService() on the services that are no longer

36% of the crash bugs are Android-specific crash bugs.

bound, interacting with the services that are no longer bound,
and cleaning up resources that no longer exist before
destroying or stopping the services.

Broadcast Receiver and Content Provider: Broadcast
receiver components handle broadcast events generated by the
system and apps. A broadcast receiver component can be
created statically by declaring it in the Android manifest file
and dynamically by registering it in the source code through
the registerReceiver() method. The dynamically created
receivers must be unregistered by calling the
unregisterReceiver() method. However, developers should be
careful when and where to call the unregisterReceiver()
method. Our dataset has 5 apps that call the
unregisterReceiver() method on the receivers that have already
been unregistered, resulting in 5 crash bugs. Our dataset has
also 1 crash bug in a receiver and 2 crash bugs in content
providers caused by incorrect configurations in the Android
manifest file.

Fragment: Starting from API level 11, fragments can be
used to separate distinct elements of an activity, which define
their own UI and lifecycle. Similar to activity components,
state transitions in fragments are handled through various
callback methods. Our dataset has 12 crash bugs in 12 apps
caused by incorrect handling of the state transitions.
Developers have fixed the bugs by using callback methods
appropriately. Our dataset has also 2 crash bugs caused by
fragments interacting with UI in incorrect states, 1 crash bug
caused by instantiating an anonymous class fragment, and 1
crash bug caused by inflating a fragment within a fragment,
which is only allowed programmatically. Fragments can be
added, removed, or replaced to/from a running activity in
response to user interactions. Each set of changes that are
committed to the activity is called a transaction. To prevent
state loss, Android does not allow to commit the fragment
transactions after the activity has saved its state. Our dataset
has 11 apps that commit fragment transactions after the
activities have saved their states, resulting in 12 crash bugs.
Developers have fixed the crash bugs by prohibiting the
commits after the activities have saved their states. Our dataset
has also 15 crash bugs in 12 apps caused by fragments not
attached to their host activities. Developers have fixed most of
the crash bugs by checking isAdded() on the fragments,
checking null or isFinishing() on the activities, and catching
the exceptions.

Context: In Android, a Context represents the context of
the current state of an app or an object, which is used to access
global information of the app environment. Furthermore, it is
used for performing app-level operations such as launching
activities, receiving intents, etc. A Context can represent an app
context, an activity context, or a service context, which have
different scopes in an app. Our dataset has 39 crash bugs in 30
apps caused by incorrect use of the context objects. Developers
have used various techniques to fix the crash bugs. They have
fixed 17 crash bugs by using contexts with appropriate scope
such as using an app context instead of an activity context, 13
crash bugs by checking null on context objects, 5 crash bugs by
retrieving the context correctly, 2 crash bugs by declaring the
context with the final keyword, 1 crash bug by handling a null
context, and 1 crash bug by using a singleton.

View and Action Bar: The user interface for each
component of an app is defined using a hierarchy of View and
ViewGroup objects. Our dataset has 3 crash bugs caused by
defining multiple parent views for a child view. The View can
be of different types. A ListView displays items in the list. The
data in the list are populated through an Adapter by calling
setAdapter(). Our dataset has 4 crash bugs caused by not
notifying ListView about the data change in the Adapter.
Furthermore, a header can be added in the ListView by calling
addHeaderView(). However, the header view must be added
before setting the adapter to the ListView. Our dataset has 2
crash bugs caused by setting adapter before adding a header
view. An explicit view can be set in an activity using
setContentView(). Furthermore, each activity can access
features of its associated window through
requestWindowFeature(). However, window features must be
accessed before setting the content view. Our dataset has 3
crash bugs caused by accessing window features after setting
the content views. A view of an activity is detached from the
window manager when the activity is destroyed. However, a
dialog started by the activity may still be running. Our dataset
has 3 crash bugs caused by views not attached to the window
manager. Our dataset has 7 other crash bugs in 6 apps caused
by incorrect handling of views such as implementing
ActionBarContextView incorrectly, performing a user action
before the view is retrieved, using a custom view incorrectly,
too many nested views causing StackOverflow, and getting
views incorrectly. In addition to the View, Android provides
various standard UI components such as action bars. All
activities in an app that use the default system theme have an
action bar. Developers can also implement an action bar using
the support library’s Toolbar class. However, an activity must
have only one action bar. Our dataset has 4 crash bugs caused
by using multiple action bars in an activity.

Other: Our dataset has 8 other crash bugs in 8 apps caused
by various app state and UI issues such as incorrect use of
wake lock and WIFI lock, exceeding maximum cursor limit,
and incorrect implementation of menus.

B. Compatibility Bugs

The Android platform provides several APIs and support
libraries for app development, which makes it easier and faster
to develop apps on the Android platform. However, due to the
rapid evolution of the Android platform, developers need to
update their apps frequently. Failure to update the APIs and
support libraries in apps may result in serious compatibility
bugs.

Since the launch of the Android platform, it has evolved to
API level 28 in very short duration. Providing support for all
the API levels or even for the target API level and below is a
non-trivial task for app developers. Our dataset has 36 apps
that use incompatible APIs, resulting in 47 crash bugs with

App developers should 1) use appropriate callback

methods in the appropriate order, 2) do not commit

fragment transactions after the activity has saved its state,

3) check the activity has not been destroyed before

performing operations on its fragments and dialogs, and 4)

use contexts with the appropriate scope.

NoSuchMethodError exceptions. Developers have fixed 46
crash bugs by changing the implementation such as performing
build version check in the source code before using the APIs,
removing the APIs, or replacing the APIs. The remaining one
crash bug was fixed by catching the exception. In addition to
the crash bugs with the NoSuchMethodError exception, our
dataset has one crash bug with NoSuchFieldError exception
that was fixed by catching the exception, 3 crash bugs with
NoClassDefFoundError exception that were fixed by using
other classes or checking the build version, and 4 crash bugs
with UnsupportedOperationException that were fixed by
changing implementation or catching the exception.

In addition to the support libraries provided by the
platform, developers can use various external libraries or
dependencies in apps. Our dataset has 46 crash bugs in 42 apps
caused by libraries incompatibilities. Developers have used
various techniques to fix the crash bugs. They have fixed 27
crash bugs by upgrading the libraries, 5 crash bugs by
downgrading the libraries, 3 crash bugs by removing the
libraries, 1 crash bug by restoring a library, 1 crash bug by
using a different class of the library, and 1 crash bug by
upgrading a build tool version in the build.gradle file. In
addition to upgrading, downgrading, removing, and reusing the
libraries, developers have also fixed 8 crash bugs by providing
workaround for the bugs in the libraries. For example, they
have fixed 3 crash bugs by checking the build version, 1 crash
bug by checking a null condition, 1 crash bug by implementing
the missing feature, 1 crash bug by removing a method call,
and 2 crash bugs by adding the required FileProvider class in
the Android manifest file.

Our dataset has several other crash bugs caused by APIs
incompatibilities. Some of the notable crash bugs and their
fixes are shown in Table 1. Our dataset has a single instance of
each crash bug shown in the table.

TABLE 1. COMPATIBILITY CRASH BUGS

Crash Bugs Fixes

bindService() does not support implicit

intents starting with API 21.

Use an explicit intent.

Error inflating class fragment. Nested

fragments were introduced in API 17.

Remove nesting.

the fragment.getlayoutinflater method

name is a duplicate of a final method in

class Landroid/app/Fragment.

Rename the method for API

26.

android:src for image view on vector is

not supported below API 21.

Use app:srcCompat.

Fragment.onAttach(Context) is not

called by android below API 23.

Override deprecated

Fragment.onAttach(Activity).

Honeycomb version 11 does not show

title bar (has custom title bar, so

getActionBar() returns null).

Null check.

Providers are by default exported below

API 17.

Set exported=”false”

explicitly.

RemoteControlClient recycles bitmaps

on its own starting from API 19.

Check the build version.

C. App Resource Bugs

App resources such as images, strings, and layouts are

integral parts of an app. Developers can declare the resources

directly in the source code or they can externalize resources in

a separate directory. However, developers are recommended

[35] to externalize app resources in a separate directory named

res for maintainability. Furthermore, developers can also

provide alternate resources for specific device configurations

by grouping them in specially-named resource directories. The

external resources are referenced in the source code or other

resource files using their unique resource IDs. Our dataset has

89 crash bugs in 63 apps caused by defining or referencing

resources incorrectly. The distribution of app resources crash

bugs according to their origin in different types of resources is

shown in Fig. 4.

Fig. 4. Distribution of app resources crash bugs in different types of resources.

String: A string resource provides text strings for apps. It

can be referenced from apps code or other resource files. Our

dataset has 5 crash bugs caused by defining string resources

incorrectly and 4 crash bugs caused by referencing missing

string resources or referencing resources incorrectly. A string

resource can be provided in different languages. However,

developers should provide a default string resource so that an

app can fall back to the default string if the app does not

support the requested language. Our dataset has 12 crash bugs

caused by localizing string resources incorrectly and 1 crash

bug caused by not providing the default string resource.

Drawable: A drawable resource is a general concept for a

graphic that can be drawn to the screen. It can be retrieved

using APIs or applied to other XML resources such as layout

using attributes. Our dataset has 10 crash bugs caused by

accessing missing drawables or accessing drawables

incorrectly, 3 crash bugs caused by defining vector drawables

incorrectly, 3 crash bugs caused by applying drawable

resources to views incorrectly, 3 crash bugs caused by

corrupted or high-resolution drawables (PNG files), 1 crash

bug caused by not following naming conventions while

writing the name of a drawable resource, and 1 crash bug

caused by using incorrect resource name while retrieving

dynamic resource ID.

Layout: Layout resources placed in the res/layout/

directory define the architecture for the UI in activities or

other UI components. The layout resources are defined in an

XML file that mainly contains view elements and their

containers. Our dataset has 4 crash bugs caused by defining

App developers should 1) check APIs support level and

perform build version check in the source code before

using the APIs, 2) avoid using unstable APIs and libraries,

and 3) update APIs and libraries frequently.

resource files incorrectly, 4 crash bugs caused by accessing

views that have not been defined in the resource files, 4 crash

bugs caused by using incorrect attributes or their values to

define views or containers, 3 crash bugs caused by referencing

resources with incorrect resource IDs, 2 crash bugs caused by

defining the same ID for different views or containers, 1 crash

bug caused by using a RippleView that does not support older

versions, and 1 crash bug caused by using an incorrect

container.

Style and Colors: A style is a collection of attributes that

specify the look and format for a view or window. A style

applied to an entire activity or app instead of an individual

view is called a theme. Our dataset has 10 crash bugs in 9 apps

caused by setting styles incorrectly or using incompatible

libraries for setting themes. Moreover, our dataset has 4 crash

bugs in 4 apps caused by setting or retrieving colors

incorrectly.

Preference and Other: Developers can provide a setting

screen for their apps, which is built using various subclasses

of the Preference class declared in an XML file. Each subclass

provides its own specialized properties and user interface. Our

dataset has 8 crash bugs in 8 apps caused by incorrectly

defining preferences in XML files. Our dataset has other 5

crash bugs in 5 apps that were fixed by setting proguard rules.

D. Permission-based Security Bugs

Android provides a permission-based security [36] to

protect the system and apps resources. The permission-based

security is implemented in the Android manifest file by

defining permissions via <permission> elements and

protecting resources via the android:permission attribute.

Sensitive system resources such as contacts are protected with

the system-defined permissions, whereas sensitive app

resources such as exported components are protected by

defining custom permissions. Apps willing to access the

protected system or app resources must declare the

permissions via <uses-permission> or <uses-permission-sdk-

23> elements. The declared permissions are granted by users

during install-time or runtime depending on the target Android

version of the apps. Fig. 5 shows the number of crash bugs

caused by the incorrect use of custom, system, and runtime

permissions. Out of 59 permission-based security crash bugs,

32 crash bugs are caused by the runtime permission that has

been introduced in the API level 23.

In the dataset, 21 apps access permission-protected system

resources without declaring the respective system permissions,

resulting in 22 crash bugs with the SecurityException.

Developers have used various techniques to fix the crash bugs.

For example, they have declared the missing permissions in

the Android manifest file, caught the exception and showed an

error message, avoided the use of the sensitive resources that

required permissions, and performed a null check on resources

that required permission in some Android versions.

Fig. 5. Types of permission-based security crash bugs.

In Android, developers can temporarily grant permissions

to read and write protected content URIs by using the flags

FLAG_GRANT_READ_URI_PERMISSION and

FLAG_GRANT_WRITE_URI_PERMISSION, respectively. However,

the permissions to read and write the URIs do not persist

permanently, which may cause an app to crash. The dataset

has 2 crash bugs caused by accessing protected content URIs

while the temporarily granted permissions are no longer

available. The crash bugs were fixed by setting the flag

FLAG_GRANT_PERSISTABLE_URI_PERMISSION.

In addition to the system permissions, developers can

define custom permissions to protect the sensitive resources

created by developers. Apps willing to access the protected

app resources of another app must declare the custom

permissions in their Android manifest files. In our dataset, one

app protects an exported component with a custom permission

without defining the permission and another app accesses a

protected component without declaring the custom

permission, resulting in 2 crash bugs. One serious drawback of

the custom permission is that the app defining a custom

permission must be installed prior to the app declaring the

custom permission. Otherwise, a SecurityException is thrown.

Our dataset has one app that crashes due to the apps install

order.

The resources protected with the system or custom

permissions cannot be accessed by apps unless the

permissions are granted by users during install-time or runtime

depending on the target Android version. Since Android 6.0

(API level 23), users have to grant the permissions during

runtime. However, developers must implement the runtime

permission [37] in the source code. Failure to implement the

runtime permission may result in crash bugs with the

SecurityException. In our dataset, developers have not

implemented the runtime permission in 20 apps while

targeting API level 23 or greater, resulting in 25 crash bugs.

They have fixed 23 crash bugs by implementing the runtime

permission, 1 crash bug by forcing the app to run on the API

level 22 or below, and the remaining 1 crash bug by updating

a library that implements the runtime permission. Our dataset

has also 3 crash bugs in 3 apps caused by the incorrect

implementation of the runtime permission.

Since API level 23, users can either deny permissions

during runtime or revoke permissions any time. Therefore,

developers should prohibit the users from accessing the

protected resources when the permissions are denied or

App developers should 1) check references of the missing

resources, 2) use appropriate resource files and naming

conventions when defining resources, and 3) check string

formatting when localizing string resources.

revoked. In addition, they should show an informative error

message to the users. In our dataset, developers have not

prohibited users from accessing the protected resources when

the permissions were denied or revoked, resulting in 4 crash

bugs. They have fixed 3 crash bugs by prohibiting the users

from accessing the resources and the remaining one crash bug

by catching the exception.

E. Device Orientation Bugs

Mobile devices can be rotated to change the screen

orientation, which needs to be reflected in the apps running on

the devices. When a device is rotated, the Android system

automatically reloads the running app with alternate resources

that match the new device configuration by restarting

(destroying and recreating) the running activity of the app.

Furthermore, developers can retain or recreate a fragment

instance when an activity is restarted during device

orientation. The process may create a range of problems if the

activity and fragment state transitions are not handled

appropriately. Our dataset has 58 crash bugs in 48 apps caused

by incorrectly handling apps behavior during device

orientation.

Developers have used various techniques to fix the crash

bugs. They have fixed 44 crash bugs by correctly handling

activity state transitions, correctly retaining or recreating

fragments instances during activity restart, checking null on

various objects, retrieving resources appropriately, and

catching exceptions. Developers can prevent the restart of the

running activity by declaring the android:configChanges

attribute with the value "orientation" in the <activity> element

of the Android manifest file, which they have used to fix 10

crash bugs. Furthermore, if the running activity is prevented

from the restart by setting the android:configChanges attribute

and the device is rotated, the system calls the

onConfigurationChanged() method, which developers can

implement to handle the configuration change. Our dataset has

1 crash bug caused by incorrectly handling new configuration

in the onConfigurationChanged() method. Moreover,

Android allows developers to use a hard value for screen

orientation such as portrait and landscape to fix the

orientation. Developers have used the hard values in the

android:screenOrientation attribute to fix 3 crash bugs.

F. Inter-component Communication Bugs

Except content providers, components of an app can

communicate with each other via an intent, which is an

abstract definition of an operation to be performed. An intent

can be explicit or implicit based on whether it specifies a

target component name. In addition to inter-component

communication within an app, a component of an app can also

communicate with a component of another app via intents.

Inter-app communication can be performed only if the target

component is exported. Our dataset has 49 crash bugs in 40

apps caused by the incorrect implementation of inter-

component communication within an app and among apps.

The types of inter-component communication crash bugs in

the dataset are shown in Fig. 6.

Fig. 6. Types of inter-component communication bugs.

An activity component communicates with another activity

component using one of the various forms of

startActivity(Intent) method. It can start an activity component

or a data URL declared in the intent, which throws an

ActivityNotFoundException if the activity or the URL does not

exist to run the given intent. Our dataset has 28 crash bugs in

24 apps that throw the ActivityNotFoundException.

Developers have used various techniques to fix the bugs. They

have fixed 11 crash bugs by catching the exception and

showing an error message, one crash bug by catching the

exception and returning a fake intent to onActivityResult(), 2

crash bugs by catching the exception and showing a custom

URL, and 2 crash bugs by correcting the URLs passed to the

intents. Developers have also used techniques that verify the

existence of activities or URLs before calling the

startActivity(Intent) method. Android allows developers to

query the PackageManager to verify the existence of an

activity, which has been used to fix 6 crash bugs. One crash

bug was fixed by checking the existence of a contact URI.

Developers have used some other techniques to fix 5 crash

bugs such as removing the startActivity(Intent) method, using

fully qualified class name of the activity in the Android

manifest file, recreating the activity, removing the parallel

request, and inverting the native activity preferences.

The target component that receives the intent during inter-

component communication can utilize various attributes of the

intent. However, developers should validate the attributes of

the received intent before utilizing them. In the dataset,

developers have not validated the received intents, resulting in

13 crash bugs with the NullPointerException. The bugs were

fixed by checking the null condition.

In addition to the 28 ActivityNotFoundException crash

bugs and 13 NullPointerException crash bugs, our dataset has

App developers should 1) ensure that the system

permissions are declared for each protected resource used

in the app, 2) implement the runtime permission in the

apps targeting API level 23 or above, and 3) prohibit users

from accessing the protected resources when the

permissions are denied or revoked by them.

App developers should 1) use appropriate callback

methods of activities and fragments in the appropriate

order, 2) prevent restart of the activities during device

orientation if the new configuration does not need to be

reflected in the apps, and 3) use a hard value for the

orientation if the app is not designed for different

orientations.

8 other crash bugs in 8 apps. The startActivity(Intent) method

can be called only from an activity context, unless the intent

has FLAG_ACTIVITY_NEW_TASK flag. In our dataset, developers

have called the method from outside of an activity context

without setting the flag, resulting in 2 crash bugs. In Android,

an activity can start another activity using

startActivityForResult() or startIntentSenderForResult()

methods to get back a result. However, if a fragment starts an

activity to get back a result, the result is returned back to its

parent activity. Our dataset has 2 crash bugs caused by

incorrectly receiving the results in the fragments. Developers

have fixed one crash bug by returning the result to the parent

activity and one crash bug by calling onActivityResult() with

the super keyword in the fragment. Android imposes a

limitation on the amount of data transferred through an intent,

which is currently 1 Mb. Our dataset has 2 crash bugs caused

by transferring more than 1 Mb of data through intents. Our

dataset has also one app that performs inter-component

communication through an implicit intent containing a bundle

with a custom Parcelable class. However, the intent gets

intercepted by another app that attempts to unparcel the

bundle, resulting in one crash bug with

ClassNotFoundException. Finally, one app in the dataset

attempts to perform inter-app communication without

exporting the component, resulting in one crash bug.

G. Memory Bugs

Android apps run on diverse categories of memory

constraint devices. Although memory size of mobile devices is

constantly increasing, users are also increasingly relying on

mobile apps to perform memory intensive tasks, which may

result in memory leak leading to crash if the apps are not

optimized for memory usage. Our dataset has 35 apps that

abuse memory, resulting in 49 crash bugs.

Developers have used various techniques to fix the crash

bugs. Android sets a hard limit on the heap size allotted for

each app. Developers have enabled the large heap by setting

the android:largeHeap attribute in the Android manifest file to

fix 3 crash bugs. However, the technique does not guarantee

an increase in the available memory if the device is

constrained by the total available memory. Among 12 bitmap

related memory bugs in 10 apps, developers have fixed 7

crash bugs by downscaling images, 2 crash bugs by

downscaling and recycling images, 1 crash bug by converting

images to low-quality format (PNG to WEBP), and 2 crash

bugs by discarding a library or using another image library.

Developers have also fixed 12 crash bugs in 8 apps by

reducing memory usage through different techniques such as

writing data directly to a disk, clearing data periodically,

detecting low memory situation and preventing further

memory usage, preventing parallel processing of multiple

events, and loading data in batches. Developers have used

various other techniques to fix 16 memory bugs in 15 apps

such as changing UI design, releasing UI resources, reusing

views, preventing infinite dialog, releasing references or using

weak references, handling files properly, refactoring source

code, and preventing access to cache for multiple requests.

Furthermore, developers have fixed 4 crash bugs by catching

exceptions and 1 crash bug by catching the exception and

decreasing maximum cache size. Android can also claim

memory by killing an app. Our dataset has one crash bug

caused by the side effect of the memory claim process. The

bug was fixed by staring a service component in the

foreground using the startForeground() method.

H. Device and OS Bugs

Android apps run on devices with various device

configurations. Developers need to consider different device

configurations while developing apps because certain features

of apps may not be supported by some devices. Our dataset

has 3 crash bugs in 2 apps caused by performing telephony

services on the devices such as tablets that do not support the

operation, 1 crash bug caused by unavailability of the external

storage in a device, 1 crash bug caused by unavailability of the

vibrator in a device, and 1 crash bug caused by handing

context menu incorrectly in tablets.

Our dataset has 4 crash bugs in 4 apps caused by the bugs

in the Android OS. Furthermore, device vendors customize the

Android OS for various purposes. Our dataset has 8 crash

bugs in 7 apps caused by handling the customized OS or

customized stock app features incorrectly in Samsung and

HTC devices. Our dataset has also 1 crash bug caused by

unavailability of the Android System WebView, which has

been detached from the OS since API level 21 and 1 crash bug

caused by unavailability of a native library in a device.

I. Processes and Threads Bugs

Each app in Android runs in a separate process.

Furthermore, all the components of an app run in the same

process by default. However, developers can specify a

component to run in another process by declaring

android:process attribute in the Android manifest file. The

components of the same app running on different processes

have to follow inter-process communication (IPC) rules. Our

dataset has 2 crash bugs in 2 apps caused by the incorrect

implementation of the IPC for the components running on

different processes. Developers have fixed the bugs by

changing the processes in the Android manifest file.

App developers should 1) query the PackageManager to

check the availability of the target component before

calling the startActivity(Intent) method and 2) check null

condition on an intent before performing any operations

on the intent.

App developers should 1) downscale images before using

in the app, 2) perform recycling on the images if the app

targets API level 10 or below, and 3) release references or

use weak references.

App developers should 1) check whether the device has

the requested feature such as telephony before accessing it

and 2) use caution when interacting with the OS or stock

apps through APIs, especially for Samsung devices.

When an app is launched, the system creates a thread of

execution for the app, usually called the main or UI thread.

Performing long-running operations on the main thread may

block the thread, eventually leading to a crash. For example,

an app in our dataset runs its media operation on the main

thread, resulting in a crash bug. Furthermore, Android does

not allow network operations to be performed on the main

thread starting from Android 3.0. However, the behavior can

be overridden by setting a thread policy, which is a bad

practice. Our dataset has 6 apps that perform the network

operations on the main thread, resulting in 6 crash bugs with

the NetworkOnMainThreadException. Developers have fixed

5 crash bugs by performing the network operations on the

AsyncTask or background threads. The remaining one crash

bug was fixed by setting a thread policy. In contrast to

performing long-running operations, UI operations must be

performed on the main thread. Our dataset has 9 apps that do

not perform the UI operations on the main thread, resulting in

9 crash bugs with two types of exceptions:

CalledFromWrongThreadException and RuntimeException

with the message “can't create handler inside thread that has

not called Looper.prepare()”. Developers have fixed 4 crash

bugs by performing the UI operations on the main thread, 3

crash bugs by defining a handler on the main thread, 1 crash

bug by using the AsyncTask, and 1 crash bug by removing the

UI operation. Android imposes a limitation on the maximum

pool size of threads, which is 128. Our dataset has one app

that crosses the limitation, resulting in one crash bug with the

RejectedExecutionException. The bug was fixed by using a

handler.

J. Back and Up Navigation Bugs

Consistent navigation is an essential element for overall

user experience [38]. The Up and Back buttons play a key role

in app navigation. The Up button is used to navigate within an

app based on the hierarchical relationships between screens,

whereas the Back button is used to navigate through the

history of screens in reverse chronological order. Our dataset

has 17 crash bugs in 16 apps that are either caused by the

incorrect implementation of the back and up navigation or

manifested due to the back navigation.

Back and up navigation is implemented in two steps: 1) a

logical parent activity is specified in the Android manifest file

and 2) NavUtils APIs are used to synthesize a new back stack.

Our dataset has 3 apps that do not specify or incorrectly

specify the logical parent activities in their Android manifest

files, resulting in 3 crash bugs. Our dataset has also 2 apps that

do not implement the NavUtils APIs, resulting in 2 crash bugs.

Furthermore, the home screen in apps should not offer the up

navigation. However, an app in the dataset offers the up

navigation in the home screen, resulting in one crash bug.

Moreover, when the back button is pressed, the system calls

the onBackPressed() method. Its default implementation

simply finishes the activity. However, developers can

customize the implementation. An app in the dataset manages

fragment’s back stack in the onBackPressed() method without

checking the empty back stack, resulting in one crash bug.

In addition to the back and up implementation related

crash bugs, our dataset has 10 crash bugs in 9 apps that

manifested due to the back navigation. In all the cases, the

tasks performed by the apps were interrupted by back events,

resulting in crash bugs. Developers have fixed the bugs by

checking null on various objects, using contexts with

appropriate scope, catching the exception, checking

isFinishing() on an activity, and handling fragments’ state

transitions appropriately.

V. DISCUSSION

The first goal of this empirical study is to understand the

distribution or prevalence of Android-specific crash bugs in

Android apps. The empirical results show that 36% (672 out

of 1,862) of the crash bugs are Android-specific, which is

significant number given that the Android apps are mostly

written in the Java programming language. Therefore, app

developers need to consider various types of Android-specific

bugs while testing their Android apps.

The second goal of this empirical study is to understand

the nature of Android-specific crash bugs and their root

causes. The Android-specific crash bugs identified in this

study have been placed in ten different categories based on

their distinctive properties. The app state and UI related crash

bugs are clearly on the top of the list. Given the UI-centric

nature of Android apps and their components with distinct

states, the result is not surprising. Most of the bugs in this

category are caused by implementing state transitions

incorrectly, particularly during adverse conditions or system

events such as an activity destruction or restart. The app state

and UI related crash bugs also manifested during the back and

up navigation and device orientation. While some of the crash

bugs in these categories are caused by the incorrect

implementation of back and up navigation and device

orientation, most of the crash bugs manifested due to the

adverse conditions such as interrupting tasks by pressing the

back button and rotating devices. Most of the existing UI

testing techniques [8, 39, 40, 41, 42] cannot detect the bugs

because they do not handle the adverse conditions. However,

some testing techniques [43, 44, 45, 46] have been proposed

that consider some of the adverse conditions or system events.

The second in the list of the highest number of Android-

specific crash bugs is the compatibility bugs. Most of the

compatibility crash bugs are caused by using incompatible

APIs or dependencies containing incompatible APIs. Given

App developers should 1) follow IPC rules for the

components of an app with different processes, 2) not

perform long-running tasks and network operations on the

main thread, and 3) perform UI operations on the main

thread.

App developers should check the tasks that can be

interrupted by the back event leading to the

NullPointerException and perform a null check on the

objects appropriately.

that the Android apps are highly dependent on APIs provided

by the platform [47, 48], developers need to frequently update

the APIs and support libraries in the released apps. However,

McDonnell et al. [49] found that developers are slow in

adopting new APIs or changes in existing APIs. It has also

been established through an empirical study [50] that unstable

or fault-proneness APIs impact the success of Android apps.

Therefore, developers need to use stable APIs if possible.

Moreover, developers can use tools [51, 52] for detecting API

compatibility issues in Android apps.

Permission-based security, inter-component

communication, and app resources are other major categories

with the Android-specific crash bugs. The permission-based

security crash bugs are mostly caused by failures to declare

the required system permissions and failures to implement the

runtime permission while targeting API level 23 or greater.

Researchers have proposed various tools [53, 54, 55] that map

sensitive APIs to their permissions. However, there is a lack of

tools integrated with the development environment that warn

developers about the required permissions based on the

sensitive APIs used in the apps. Most of the inter-component

communication crash bugs are caused by failures to handle the

exceptional conditions such as unavailability of the target

components to run the given intents and extracting data from

null intents. In addition to UI and stress testing techniques

such as monkey [56], researchers have proposed various tools

and techniques [57, 58, 59, 60, 61] to analyze and test inter-

component communication, which can be useful for

developers in detecting the crash bugs. The app resources

crash bugs are mostly caused by retrieving resources

incorrectly or retrieving missing resources. In addition, several

crash bugs are also caused by defining resources such as

layout, string, drawable, and style incorrectly in XML files.

The app resources crash bugs can be detected through UI

testing techniques. However, there is hardly any tools

available that specifically target app resources bugs.

The final goal of this empirical study is to understand the

various solutions implemented by developers in fixing the

Android-specific crash bugs. Each category of the Android-

specific crash bugs requires specific solutions to fix the bugs,

as discussed in Section IV. Therefore, it is difficult to

generalize the solutions implemented by developers in fixing

the crash bugs. However, there are some general patterns in

fixing the crash bugs. In addition to the specific solutions

implemented by developers in fixing the specific crash bugs,

developers have fixed 56 Android-specific crash bugs, which

is 8% of the total Android-specific crash bugs, by catching the

exceptions. In contrast to our result, a study performed by

Zhang et al. [62] on 8 popular Android apps shows that 22%

of the bugs were fixed by adding, modifying, or refactoring

exception handlers. However, their study included Java-

related bugs. One of the acute problems in the Java

programming or the object-oriented programming is null-

pointer dereferencing [63]. Android inherited the same

problem. Developers have fixed 55 Android-specific crash

bugs by checking the null condition. In contrast to our result,

Coelho et al. [64] found that 27.71% of the exception stack

traces in the bug reports of Android apps contained a

NullPointerException. However, their study included Java-

related bugs.

VI. THREATS TO VALIDITY

Threats to external validity relate to the generalizability of

our results. In comparison to millions of apps available for

download in the Google Play store, we performed the

empirical study on a very small dataset with 672 Android-

specific crash bugs from 418 free and open source apps.

Although the dataset is fairly large for this kind of studies, the

results of this study may not be generalized in a larger context.

Furthermore, we have performed the study on free and open

source Android apps. Therefore, the results may not be

generalized for all kinds of apps.

Threats to internal validity relate to the methodology used

to perform the study. Our study depends heavily on manual

analysis, which has various limitations that may influence the

results. We identified crash bugs by searching issue trackers

with three different keywords: crash, force close, and

exception. Although highly unlikely, it is possible that the

keywords might not have been used in the crash bug reports,

resulting in the exclusion of the crash bugs in our dataset.

Furthermore, we manually performed the analysis to identify

the Android-specific crash bugs, their root causes, and

solutions, which may influence the results. However, the

results were cross-validated to mitigate the threat. Moreover,

we have provided all the data used in this study for interested

readers [30].

VII. CONCLUSION

In this paper, we performed an empirical study to

understand the Android-specific crash bugs, their prevalence,

root causes, and solutions by analyzing 1,862 confirmed crash

reports of 418 open source Android apps. The empirical

results show that Android apps have a significant number of

(672 out of 1,862) Android-specific crash bugs that belong to

ten different categories based on their distinctive properties.

Although the Android-specific crash bugs in each category

have specific root causes, the empirical results show that they

mainly originate due to failure to handle special or exceptional

cases, failure to update apps promptly when the changes are

made in the platform, and failure to handle adverse conditions.

Therefore, to prevent the crash bugs, in addition to handling

exceptional cases and adverse conditions during app

development, developers need to update apps frequently

reflecting changes made in the platform.

ACKNOWLEDGMENT

This research was supported by the BK21 Plus project (SW

Human Resource Development Program for Supporting Smart

Life – 21A20131600005), Kyungpook National University,

Korea and the Basic Science Research Program through the

National Research Foundation of Korea (NRF-

2017R1D1A3B04035880 and NRF-2018R1A6A1A03025109)

funded by the Ministry of Education.

REFERENCES

[1] AppBrain - Number of available Android apps in the Play Store.
http://www.appbrain.com/stats/number-of-android-apps.

[2] S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden.
Investigating country differences in mobile app user behavior and
challenges for software engineering. IEEE Transactions on Software
Engineering 41, no. 1 (2015): 40-64.

[3] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input
generation for android: Are we there yet? In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 429-440. IEEE, 2015.

[4] S. Zein, N. Salleh, and J. Grundy. A systematic mapping study of
mobile application testing techniques. Journal of Systems and Software
117 (2016): 334-356.

[5] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo.
Understanding the test automation culture of app developers. In 2015
IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST), pp. 1-10. IEEE, 2015.

[6] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
app development. In 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 15-24. IEEE,
2013.

[7] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. D. Penta, C.
Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk. Enabling mutation
testing for Android apps. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pp. 233-244. ACM, 2017.

[8] C. Hu, and I. Neamtiu. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on
Automation of Software Test, pp. 77-83. ACM, 2011.

[9] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su.
Large-Scale Analysis of Framework-Specific Exceptions in Android
Apps. In Proceedings of the 40th International Conference on Software
Engineering, pp. 408-419. ACM, 2018.

[10] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru. An
empirical analysis of bug reports and bug fixing in open source android
apps. In Proceedings of the 17th European Conference on Software
Maintenance and Reengineering (CSMR), pp. 133-143. IEEE, 2013.

[11] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi. Characterizing failures in
mobile oses: A case study with android and symbian. In 2010 IEEE 21st
International Symposium on Software Reliability Engineering (ISSRE),
pp. 249-258. IEEE, 2010.

[12] M. E. Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for me!
characterizing non-reproducible bug reports. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pp. 62-71.
ACM, 2014.

[13] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my
phone awake?: characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proceedings of the 10th international conference on
Mobile systems, applications, and services, pp. 267-280. ACM, 2012.

[14] Y. Liu, C. Xu, S. Cheung, and V. Terragni. Understanding and detecting
wake lock misuses for android applications. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 396-409. ACM, 2016.

[15] Y. Liu, C. Xu, and S. Cheung. Characterizing and detecting performance
bugs for smartphone applications. In Proceedings of the 36th
International Conference on Software Engineering, pp. 1013-1024.
ACM, 2014.

[16] H. Shahriar, S. North, and E. Mawangi. Testing of memory leak in
Android applications. In 2014 IEEE 15th International Symposium on
High-Assurance Systems Engineering (HASE), pp. 176-183. IEEE,
2014.

[17] A. K. Jha, S. Lee, and W. J. Lee. Developer mistakes in writing Android
manifests: an empirical study of configuration errors. In Proceedings of
the 14th International Conference on Mining Software Repositories, pp.
25-36. IEEE Press, 2017.

[18] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively detecting
mobile app bugs with appdoctor. In Proceedings of the Ninth European
Conference on Computer Systems, p. 18. ACM, 2014.

[19] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury.
Detecting energy bugs and hotspots in mobile apps. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 588-598. ACM, 2014.

[20] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, pp. 94-105. ACM, 2016.

[21] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing-and
touch-sensitive record and replay for android. In Proceedings of the 35th
International Conference on Software Engineering (ICSE), pp. 72-81.
IEEE, 2013.

[22] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-and-
replay for android. In ACM SIGPLAN Notices, vol. 50, no. 10, pp. 349-
366. ACM, 2015.

[23] Z. Qin, Y. Tang, E. Novak, and Q. Li. Mobiplay: A remote execution
based record-and-replay tool for mobile applications. In Proceedings of
the 38th International Conference on Software Engineering, pp. 571-
582. ACM, 2016.

[24] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier. Reproducing
context-sensitive crashes of mobile apps using crowdsourced
monitoring. In MOBILESoft'16, pp. 88-99. IEEE, 2016.

[25] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D.
Poshyvanyk. Auto-completing bug reports for android applications. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 673-686. ACM, 2015.

[26] A. K. Jha and W. J. Lee. Capture and Replay Technique for
Reproducing Crash in Android Applications. In Proceedings of the 12th
IASTED International Conference in Software Engineering, pp. 783-
790. 2013.

[27] A. K. Jha, S. Jeong, and W. J. Lee. Value-deterministic search-based
replay for android multithreaded applications. In Proceedings of the
2013 Research in Adaptive and Convergent Systems, pp. 381-386.
ACM, 2013.

[28] S.H. Tan, Z. Dong, X. Gao, and A. Roychoudhury. Repairing Crashes in
Android Apps. In Proceedings of the 40th International Conference on
Software Engineering, pp. 408-419. ACM, 2018.

[29] F-Droid, Free and Open Source Android App Repository - https://f-
droid.org/

[30] Dataset - Android-specific crash bugs.
https://github.com/HiFromAjay/Android-specific-Crash-
Bugs/blob/master/Dataset.pdf

[31] C.B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 4 (1999): 557-
572.

[32] M.B. Miles, A.M. Huberman, and J. Saldaña J. Qualitative Data
Analysis: A Methods Sourcebook (3rd ed.). SAGE Publications, Inc.
2013.

[33] Context -
https://developer.android.com/reference/android/content/Context.html

[34] A. K. Jha, and W. J. Lee. An empirical study of collaborative model and
its security risk in Android. Journal of Systems and Software. 137C
(2018) pp. 550-562

[35] Resources Overview -
https://developer.android.com/guide/topics/resources/overview.html.

[36] A. K. Jha and W. J. Lee. Analysis of Permission-based Security in
Android through Policy Expert, Developer, and End User Perspectives.
J. UCS 22, no. 4 (2016): 459-474.

[37] Requesting permissions at run time -
https://developer.android.com/training/permissions/requesting.html

[38] Navigation with Back and Up -
https://developer.android.com/design/patterns/navigation.html

[39] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and A.
M. Memon. Using GUI ripping for automated testing of Android
applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 258-261. ACM,
2012.

[40] W. Yang, M. R. Prasad, and T. Xie. A Grey-Box Approach for
Automated GUI-Model Generation of Mobile Applications. In FASE,
vol. 13, pp. 250-265. 2013.

[41] T. Azim, and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of android apps. In Acm Sigplan Notices, vol. 48, no.
10, pp. 641-660. ACM, 2013.

[42] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps
with minimal restart and approximate learning. In Acm Sigplan Notices,
vol. 48, no. 10, pp. 623-640. ACM, 2013.

[43] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of
oracles for testing user-interaction features of mobile apps. In
Proceedings of the Seventh International Conference on Software
Testing, Verification and Validation (ICST), pp. 183-192. IEEE, 2014.

[44] C. Q. Adamsen, G. Mezzetti, and A. Møller. Systematic execution of
android test suites in adverse conditions. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, pp. 83-93.
ACM, 2015.

[45] Z. Shan, T. Azim, and I. Neamtiu. Finding resume and restart errors in
Android applications. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 864-880. ACM, 2016.

[46] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su. Guided, stochastic model-based GUI testing of Android apps. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 245-256. ACM, 2017.

[47] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan. Exploring the
development of micro-apps: A case study on the blackberry and android
platforms. In 2011 11th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM), pp. 55-64. IEEE,
2011.

[48] M. D. Syer, M. Nagappan, A. E. Hassan, and B. Adams. Revisiting prior
empirical findings for mobile apps: An empirical case study on the 15
most popular open-source android apps. In Proceedings of the 2013
Conference of the Center for Advanced Studies on Collaborative
Research, pp. 283-297. IBM Corp., 2013.

[49] T. McDonnell, B. Ray, and M. Kim. An empirical study of api stability
and adoption in the android ecosystem. In 2013 29th IEEE International
Conference on Software Maintenance (ICSM), pp. 70-79. IEEE, 2013.

[50] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta, R.
Oliveto, and D. Poshyvanyk. Api change and fault proneness: A threat
to the success of android apps. In Proceedings of the 2013 9th joint
meeting on foundations of software engineering, pp. 477-487. ACM,
2013.

[51] L. Wei, Y. Liu, and S. Cheung. Taming android
fragmentation:Characterizing and detecting compatibility issues for
android apps. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pp. 226-237. ACM,
2016.

[52] L. Li, T. F. Bissyandé, H. Wang, and J. Klein. CiD: automating the
detection of API-related compatibility issues in Android apps. In
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 153-163. ACM, 2018.

[53] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the
android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security, pp. 217-228.
ACM, 2012.

[54] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security, pp. 627-638. ACM, 2011.

[55] A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon. Static analysis for
extracting permission checks of a large scale framework: The challenges
and solutions for analyzing android. IEEE Transactions on Software
Engineering 40, no. 6 (2014): 617-632.

[56] UI/Application Exerciser Monkey -
https://developer.android.com/studio/test/monkey.html

[57] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer. An
empirical study of the robustness of inter-component communication in
Android. In 2012 42nd annual IEEE/IFIP international conference on
Dependable systems and networks (DSN), pp. 1-12. IEEE, 2012.

[58] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel. Composite
constant propagation: Application to android inter-component
communication analysis. In Proceedings of the 37th International
Conference on Software Engineering, pp. 77-88. IEEE Press, 2015.

[59] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt, S.
Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. Iccta: Detecting
inter-component privacy leaks in android apps. In Proceedings of the
37th International Conference on Software Engineering, pp. 280-291.
IEEE Press, 2015.

[60] A. K. Jha, S. Lee, and W. J. Lee. Modeling and test case generation of
inter-component communication in Android. In Proceedings of the
Second ACM International Conference on Mobile Software Engineering
and Systems, pp. 113-116. IEEE Press, 2015.

[61] R. Sasnauskas, and J. Regehr. Intent fuzzer: crafting intents of death. In
Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing,
Debugging, and Analytics (PERTEA), pp. 1-5. ACM, 2014.

[62] P. Zhang, and S. Elbaum. Amplifying tests to validate exception
handling code: An extended study in the mobile application domain.
ACM Transactions on Software Engineering and Methodology
(TOSEM) 23, no. 4 (2014): 32.

[63] B. Meyer. Ending null pointer crashes. Communications of the ACM 60,
no. 5 (2017): 8-9.

[64] R. Coelho, L. Almeida, G. Gousios, and A. V. Deursen. Unveiling
exception handling bug hazards in Android based on GitHub and
Google code issues. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories (MSR), pp. 134-145. IEEE, 2015.

