
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A framework for testing Android apps

by reusing test cases

Ajay Kumar Jha, Deok Yeop Kim, Woo Jin Lee

School of Computer Science and Engineering

Kyungpook National University

Daegu, Republic of Korea

ajaykjha123@yahoo.com, ejrduq77@naver.com, woojin@knu.ac.kr

Abstract—Android apps are generally developed by an

individual developer or a small team of developers, and the

developers may not have experience of testing Android apps or

they may not have experience of testing any software systems.

Furthermore, even an individual that does not have a basic

knowledge of Android can build Android apps using various app

generator tools available in the market. In this environment, apps

may not get tested at all or developers may not prioritize the

testing activities, which may result in low-quality or error-prone

apps. Eventually, users may give negative reviews to the apps or

they may abandon the apps due to bugs. Therefore, instead of

designing and writing new test cases, developers need tools and

techniques that can automatically test their apps by utilizing the

test cases of existing apps. It will not only help novice app

developers in testing their apps but also help experience app

developers in reducing time and effort to test their apps. In this

paper, we propose a framework for testing Android apps by

reusing test cases. The framework leverages test cases and domain

knowledge of existing open-source Android apps to test new

Android apps.

Keywords — Android apps, test case reuse, unit testing, app

testing framework

I. INTRODUCTION

With the improvement in tools and techniques for the
Android platform and their ease of availability, it has never been
easier to develop Android apps. Even Android apps can be
automatically built using various app generator tools available
in the market [1, 2]. Furthermore, Android apps can be easily
disseminated to a large number of users through various app
stores. Therefore, there is a constant increase in the number of
Android apps. As of January 2019, there are over 2.5 million
apps available for download in the Google Play store [3],
including the apps that perform sensitive and critical tasks such
as financial and medical apps. However, low thresholds to app
development do not ensure that apps are of high quality or error-
free. The low-quality or error-prone apps can significantly
impact the user experience, and users may give negative reviews
to the apps or they may abandon the apps [4]. Furthermore, low-
quality apps may not appear in the Google Play search results
[5], which is a primary method for users to find their apps [4].
Therefore, it is important to adequately test the apps before
releasing them to the market.

Unfortunately, the trend is not the same for testing Android
apps. The advancement in tools and techniques for testing

Android apps has yet to catch up, in part because of the rapid
evolution of the Android platform. Although recent
advancement in tools and techniques for testing Android apps
[6, 7, 8, 9], a large number of app developers prefer to test their
apps manually due to several challenges [10, 11] in using the
available testing tools and techniques. Some of the major
challenges faced by app developers in testing their apps are time
constraints, compatibility issues, lack of exposure, complexity
of the tools, and lack of experience [10]. Therefore, rather than
developing yet another tool, it is important to address these
challenges when developing new tools and techniques for
testing Android apps.

Some of the major tasks in testing are designing and writing
effective test cases. A test case is a specification of the inputs,
execution conditions, and expected results. It takes a substantial
amount of time and effort to design and write effective test cases
that can find defects in software under test. However, most of
the app developers want to release their apps as soon as possible
before someone else develops a similar app [10]. Therefore, app
developers may not have sufficient time or they may not want to
invest time in designing and writing effecting test cases.
Furthermore, app developers may not have exposure to the
available testing tools and frameworks such as Junit and
Robotium or they may not have experience of using the
available testing tools and frameworks. Learning new tools and
techniques takes a considerable amount of time and effort.
Therefore, app developers may be reluctant in using the
available testing tools and frameworks. Test case reuse is a
technique that greatly reduces time and effort in testing a
software system. Therefore, the aforementioned problems can
be addressed or mitigated by reusing test cases written by expert
app developers.

Most of the Android apps are small-sized [12], and they are
developed to perform a very specific task. For example, most of
the alarm clock apps display time and alert an individual or a
group of individuals at a specified time. There are hundreds of
alarm clock apps available in the Google Play store. The trend
is similar for the apps that perform other tasks. Users can find a
large number of apps that perform identical tasks. Therefore, it
is highly probable that a large number of Android apps have
identical implementations at the code level. Code reuse can be
used as a metric to assess the identical code in a software system.
A study [13] shows that code reuse is prevalent in Android apps.
For example, the study found that 217 apps have the exact same
set of classes as another app in the same category of the Google

Play store. Therefore, test case reuse in Android apps can be
feasible.

Asaithambi and Jarzabek [14] presented a study on test case
reuse in Android platform libraries. They analyzed the Android
platform test case libraries to assess the degree of redundancies
and identified patterns of repetitions among test cases that are
potential candidates for reuse. Finally, they outlined generic
representations for the repetition patterns as a practical way to
realize the concept of test case reuse. Later, in another work [15],
they proposed a Generic Adaptive Test Templates (GATT)
approach to address the problem of test redundancies in the
Android platform libraries. However, the studies [14, 15] do not
apply to Android apps. To the best of our knowledge, there is no
existing study that investigates test case reuse in Android apps.
However, test case reuse is not a new topic in other software
systems. Several researchers [16, 17] have studied test case
reuse in different software systems.

In this paper, we propose a framework for testing Android
apps by reusing test cases. The framework leverages test cases
and domain knowledge of existing open-source Android apps to
test new Android apps. The framework uses the test cases that
are extracted by mining existing open-source Android apps and
analyzes the apps that contain test cases to get the domain
knowledge. Based on the domain knowledge, the framework
categorizes the extracted test cases, which are then generalized
for reuse. The framework then analyzes the app under test to get
the domain knowledge. Finally, the framework tests the app by
reusing the test cases of the existing apps that match the domain
of the app under test.

II. THE VISION

Due to the popularity of the Android platform, a large
number of developers are attracted to develop and market their
apps. However, the developers may not have prior experience of
testing Android apps or they may not have experience of testing
any software systems. Therefore, the vision is to create a
framework for testing Android apps that can be used by the app
developers that do not have prior experience of testing. We
envision to achieve the objective by reusing the test cases that
are designed and written by expert Android app developers. In
addition to the lack of experience of app developers, the
proposed framework aim to address several other major
challenges, such as time constraints, faced by app developers in
testing their Android apps.

An architectural view of the proposed testing framework is
shown in Fig. 1. The framework has three main components.
The domain analysis component analyzes the domain of the app
under test and the domain of the existing apps that contain test
cases. The test case generalization component generalizes the
test cases extracted from the existing apps. Finally, the test case
reuse component reuses the generalized test cases in the app
under test. In addition to the aforementioned components, the
framework has a test execution environment. The framework
uses the JUnit and Robolectric unit testing frameworks on top of
the Android Studio to execute the reused test cases.

We have outlined a detailed approach for the proposed
framework, which is shown in Fig 2. The approach is mainly
based on mining test cases, domain analysis, generalizing test

cases, and test case reuse. In this approach, existing open-source
Android apps are mined and analyzed to get test cases and
domain knowledge, respectively. Furthermore, the app under
test is analyzed to get the domain knowledge. Then, the test
cases of the existing open-source apps that have the same
domain as the app under test are reused in the app under test.
Finally, the app under test is executed to get the test results. We
provide further details on the working process of the approach
in the remainder of this section.

Fig. 1. An architectural view of the test case reuse framework.

A. Mining Test Cases

A common way of testing a software system is to design and

write effective test cases that can detect bugs in the system.

Among different levels of testing such as unit, integration,

system, and acceptance testing, the unit testing is used to test

individual software components or a group of components,

which is widely used for testing a software system. Most of the

Android app developers use unit testing frameworks such as

JUnit and Robolectric to write test cases for their apps [10, 18].

Therefore, the proposed framework reuses unit test cases of the

existing open-source apps for testing new Android apps.

In the proposed approach, the first task is to mine unit test

cases from the existing open-source Android apps. To

accomplish the task, we will collect a large number of Android

apps from various open-source Android app repositories such

as F-Droid and GitHub. We will then analyze the collected apps

for test cases. The apps that contain unit test cases will be then

separated. Finally, we will manually extract test cases from the

apps. In this paper, we will explain our approach with a running

example. Fig. 3 shows a Robolectric test extracted from a real

app named Amaze File Manager [19]. We have excluded some

of the code from the test for brevity. The code shown in the

figure tests the file open function implemented in the

TextEditorActivity class of the app. The activity opens the file

content in a TextView. A user can then edit and save the content

in the file.

1 @RunWith(RobolectricTestRunner.class)
2 public class TextEditorActivityTest {
3 private final String fileContents = "fsdfsdfs";
4 private TextView text;
5
6 @Test
7 public void testOpenFileUri() throws IOException {
8 File file = simulateFile();
9 Intent intent = new Intent(Intent.ACTION_VIEW);
10 intent.setData(Uri.fromFile(file));
11 generateActivity(intent);
12 assertThat(text.getText().toString(),
13 is(fileContents + "\n"));
14 }
15
16 private void generateActivity(Intent intent) {
17 ...
18 TextEditorActivity activity = controller.get();
19 text = activity.findViewById(R.id.fname);
20 activity.onDestroy();
21 }
22
23 private File simulateFile() throws IOException {
24 ...
25 PrintWriter out = new PrintWriter(file);
26 out.write(fileContents);
27 ...
28 }
29 }

Fig. 3. A Robolectric test for a file open function.

B. Domain Analysis

The systematic discovery and exploitation of commonality

across related software systems is a fundamental technical

requirement for achieving successful software reuse [20].

Domain analysis is one technique that can be applied to meet

this requirement [21]. Therefore, we will use the domain

analysis technique to categorize Android apps and reuse their

test cases in the app under test.

Although most of the Android apps are designed to perform

a very specific task, there is a large variation in the tasks they

perform. However, it is not hard to find similar apps in the

market. Google Play store organizes similar apps in a category.

It has currently 35 top-level categories, and each category has a

large number of similar apps. However, we cannot use apps

from the Google Play store because they are closed-source. We

need open-source apps to reuse test cases. Therefore, we have

to categorize the apps collected from various open-source

repositories based on their similarity.

The domain analysis will be performed on the existing

open-source apps that contain test cases. Based on the result,

test cases of the apps that have the same domain will be grouped

together along with their domain summary. Furthermore, the

domain analysis will be also performed on the app under test.

Finally, the domain of the app under test and the domain of the

existing apps that contain test cases will be matched to reuse

test cases in the app under test.

The Robolectric test shown in Fig. 3 has been extracted

from a file manager app [19] available in F-Droid. Through a

simple app description analysis, we found three other file

manager apps in the F-Droid: Simple File Manager [22],

Android File Manager [23], and OI File Manager [24]. Among

these four file manager apps, two apps contain test cases.

Therefore, the test cases of the two apps, including the test

shown in Fig. 3, can be reused in the other two apps. In addition

to the file manager apps, the test can also be reused in various

other apps that perform the file open function.

C. Generalize Test Cases

In the proposed approach, test cases are extracted from the

open-source Android apps. The extracted test cases of the apps

that belong to the same domain are then grouped together. The

test cases are then reused in the app under test if the domain of

the app under test matches with the domain of the apps from

which the test cases were extracted. However, we need to

generalize the test cases that belong to the same domain before

reusing them in the app under test.

A test case may contain various parameters and other

elements such as resource files that are specific to an app.

Therefore, the extracted test cases cannot be directly reused in

the app under test. The test cases need to be generalized before

they are reused. We will generalize the test cases by identifying

and then removing the elements of the test cases that are

specific to an app. While testing an app, the removed elements

Fig. 2. An approach for test case reuse in Android apps.

of the test cases will be reintroduced or replaced in the generic

test cases using variability techniques adopted from the

Software Product Line [25].

Let us take an example of the Robolectric test shown in Fig.

3. It has two components that are specific to an app: the name

of the activity class (lines 2 and 18) that performs the file open

function and the resource ID (line 19) of the TextView that

displays the file content. Therefore, the test can be generalized

by modeling these two components as variables. Eventually, the

test can be reused in another app by assigning the app-specific

components to the variables.

As illustrated through the example shown in Fig. 3, the first

task that needs to be accomplished to generalize the test is to

identify app-specific components in the test file. To accomplish

the task, we will manually analyze the extracted test files. The

identified app-specific components will be then declared as

input variables for the test file. When reusing the test, the

developer of the app under test has to provide her app-specific

components in place of the declared variables. Manually

identifying app-specific components takes substantial efforts,

but the proposed system will extract common components that

can be reused without any modifications and then transform

app-specific components in an automated way.

III. WHY IS IT NEW?

Researchers and practitioners have proposed various
automated testing tools and techniques for Android apps [6, 7,
8, 9] to address some of the major challenges [10, 11] faced by
Android app developers in testing their apps. However, none of
the existing tools and techniques reuses test cases for testing
Android apps. Test case reuse is known to reduce effort and
improve productivity [16].

The idea of testing a software system by reusing test cases is
not new and it has been previously implemented in different
software systems using various approaches such as domain-
based testing, model-based testing, test patterns, and test
frameworks [16, 17]. Furthermore, researchers [14, 15] have
also reused test cases for reducing redundancies in testing
Android platform libraries. However, the work proposed in this
paper has two new components. First, we proposed a framework
for testing Android apps by reusing test cases. To the best of our
knowledge, none of the existing works that reuse test cases
target Android apps, which can be more suitable subjects for test
case reuse due to the existence of a large number of open-source
apps that provide identical functionalities. Second, our approach
is a mining-based test case reuse, which is different than the
existing techniques that mostly reuse test cases for regression
testing. We mine test cases of the existing open-source Android
apps to reuse the test cases in new Android apps.

IV. THE RISKS

There are various research challenges and risks in
implementing the proposed framework for testing Android apps.
We discuss some of the major research challenges and risks in
the remainder of this section.

The proposed framework reuses test cases of the existing
open-source apps that have the same domain as the app under

test. Therefore, the first major challenge is to collect a large
number of open-source apps that cover a wide range of domains,
if not all. Open-source app repositories such as F-Droid and
GitHub host a large number of Android apps. However, there is
a risk that the apps may not belong to a wide range of domains.
For example, financial apps are generally closed-source and they
may not be available as open-source apps. Therefore, if we
cannot find the open-source apps of a particular domain, the
framework will not be able to test the apps of that domain.

To reuse test cases, we need a large collection of test cases.
However, there may not be adequate open-source apps that have
test cases. For example, Kochhar et al. [10] found that only
14.19% of the apps in the F-Droid repository have at least one
test cases. Although we plan to include apps from GitHub
repository too, we may not still find enough test cases that
represent a wide range of domains. Therefore, we may not have
test cases of a particular domain that can be reused.

The proposed approach generalizes test cases extracted from
existing open-source apps for reuse in the app under test. The
approach will use variability techniques adopted from the
Software Product Line. However, the current Software Product
Line research lacks techniques to address generic test cases. The
contributions in this field are either ideas or partial
implementations [26]. Therefore, there is a risk that we may not
be able to address the problem completely.

V. NEXT STEPS

In this paper, we proposed a framework for testing Android
apps by reusing test cases of the existing open-source apps.
Furthermore, the proposed framework is aimed at providing a
testing platform for Android app developers that do not have
prior experience of testing. We are currently working on the
implementation of the framework. We have identified a list of
key tasks to deliver the proposed framework.

The first major task is to collect open-source apps that
contain test cases. We have identified F-Droid and GitHub as
our target repositories for collecting apps. We will manually
extract test cases from the collected apps. The second major task
is domain analysis of the existing apps and the app under test.
We could not identify any existing tools that could perform
domain analysis on Android apps. Therefore, we plan to use
GUI analysis techniques to infer domains of the apps. The third
major task is to generalize test cases. We will use variability
techniques adopted from the Software Product Line. However,
there are hardly any tools available that can be used directly.
Therefore, we will develop a tool that can generalize test cases.
Overall, the implementation of the proposed framework is a
challenging task, which we intend to achieve either by using the
available tools and techniques or developing them.

ACKNOWLEDGMENT

This research was supported by the BK21 Plus project (SW

Human Resource Development Program for Supporting Smart

Life – 21A20131600005), Kyungpook National University,

Korea and the Basic Science Research Program through the

National Research Foundation of Korea (NRF-

2017R1D1A3B04035880 and NRF-2018R1A6A1A03025109)

funded by the Ministry of Education.

REFERENCES

[1] Android app builder - https://www.appypie.com/android-app-builder.

[2] Free app creator - https://www.appsgeyser.com.

[3] Number of Android apps in the Google Play store -
https://www.appbrain.com/stats/number-of-android-apps

[4] S. L. Lim, P. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden.
"Investigating country differences in mobile app user behavior and
challenges for software engineering." IEEE Transactions on Software
Engineering 1 (2015): 1-1.

[5] Google Play search and discovery algorithm to reflect app quality -
https://android-developers.googleblog.com/2017/08/how-were-helping-
people-find-quality.html

[6] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation
for android: Are we there yet? In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 429-440.
IEEE, 2015.

[7] S. Zein, N. Salleh, and J. Grundy. A systematic mapping study of mobile
application testing techniques. Journal of Systems and Software 117
(2016): 334-356.

[8] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein. "Automated
testing of android apps: A systematic literature review." IEEE
Transactions on Reliability 99 (2018): 1-22.

[9] P. Tramontana, D. Amalfitano, N. Amatucci, and A. R. Fasolino.
"Automated functional testing of mobile applications: a systematic
mapping study." Software Quality Journal (2018): 1-53.

[10] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo.
"Understanding the Test Automation Culture of App Developers." In
2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pp. 1-10. IEEE, 2015.

[11] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile
app development. In 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 15-24. IEEE,
2013.

[12] A. K. Jha and W. J. Lee. "An empirical study of collaborative model and
its security risk in Android." Journal of Systems and Software 137 (2018):
550-562.

[13] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan. "Understanding
reuse in the android market." In 2012 IEEE 20th International Conference
on Program Comprehension (ICPC), pp. 113-122. IEEE, 2012.

[14] S. P. R. Asaithambi and S. Jarzabek. "Towards test case reuse: a study of
redundancies in android platform test libraries." In International
Conference on Software Reuse, pp. 49-64. Springer, Berlin, Heidelberg,
2013.

[15] S. P. R. Asaithambi and S. Jarzabek. "Pragmatic Approach to Test Case
Reuse-A Case Study in Android OS BiDiTests Library." In International
Conference on Software Reuse, pp. 122-138. Springer, Cham, 2015.

[16] R. Tiwari and N. Goel. "Reuse: reducing test effort." ACM SIGSOFT
Software Engineering Notes 38, no. 2 (2013): 1-11.

[17] D. Flemström, D. Sundmark, and W. Afzal. "Vertical test reuse for
embedded systems: A systematic mapping study." In 2015 41st
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 317-324. IEEE, 2015.

[18] D. B. Silva, M. M. Eler, V. HS Durelli, and A. T. Endo. Characterizing
mobile apps from a source and test code viewpoint. Information and
Software Technology 101 (2018): 32-50.

[19] Amaze File Manager.
https://github.com/TeamAmaze/AmazeFileManager

[20] R. Prieto-Díaz, "Domain analysis: An introduction." ACM SIGSOFT
Software Engineering Notes 15, no. 2 (1990): 47-54.

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. No.
CMU/SEI-90-TR-21. Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990.

[22] Simple File Manager - https://github.com/SimpleMobileTools/Simple-
File-Manager

[23] Android File Manager - https://github.com/nexes/Android-File-Manager

[24] OI File Manager - https://github.com/openintents/filemanager

[25] E. Engström and P. Runeson. "Software product line testing–a systematic
mapping study." Information and Software Technology 53, no. 1 (2011):
2-13.

[26] S. P. R. Asaithambi and S. Jarzabek. "Generic adaptable test cases for
software product line testing: software product line." In Proceedings of
the 3rd annual conference on Systems, programming, and applications:
software for humanity, pp. 33-36. ACM, 2012.

