
Developer mistakes in writing Android manifests:

An empirical study of configuration errors

Ajay Kumar Jha, Sunghee Lee and Woo Jin Lee

School of Computer Science and Engineering

Kyungpook National University

Daegu, Republic of Korea

ajaykjha123@yahoo.com, lee3229910@gmail.com, woojin@knu.ac.kr (Corresponding Author)

Abstract— Each Android app must have an Android manifest

file. It is one of the most important configuration files

manually written by developers. In addition to various

configuration parameters required to run an app, it also

contains configuration parameters which are used to

implement security, compatibility, and accessibility of an app.

Any mistakes in writing the manifest file can cause serious

implications in terms of security, reliability, and availability of

an app. In this paper, we study and report different types of

mistakes committed by developers in writing Android manifest

files. The study was performed on 13,483 real-world Android

apps. We also present an open source rule-based static analysis

tool which detects developer mistakes in the manifest file. The

tool generates a warning message if it detects any

misconfigurations in the manifest file. We used the tool to

perform the empirical study and it generated total 59,547

configuration errors in 11,110 apps. Only 2,373 apps, among

studied apps, do not have any configuration errors.

Keywords- Android apps; Android manifest; configuration

errors; rule-based error detection

I. INTRODUCTION

Android operating system has become pervasive and
ubiquitous. It can be found almost everywhere in diverse
categories of devices for example, wrist watches,
infotainment systems, tablets, and smartphones. With the
penetration of Android operating system in diverse
categories of devices, number of different purposes Android
apps are constantly increasing in the market. As of February
2017, Google Play store has more than 2.6 million apps
available for download [1]. Currently, the Play store hosts
wide range of personal as well as business apps, including
apps which perform critical tasks such as financial
transactions, health monitoring, biometrics security, etc.
Thus, there is a pressing demand from users for highly
reliable and secure Android apps which is evident from the
fact that users have discontinued using apps due to reliability
and security issues [2].

Configuration errors are one of the leading cause of
system failures [3] but, unlike many complex systems
software where a configuration task is mainly performed by
system administrators or users, an Android manifest file is

written by developers. One can hypothesize that developers
would make less mistakes because they have better
understanding of the system as well as better programming
and debugging skills. While it may be correct in comparison
to system administrators or users, Android app developers
encounter additional challenges in writing the manifest file.
Most of the configuration parameters in the manifest file are
highly specific to Android platform which even an
experienced Java programmer must learn from scratch. An
existing work [4] shows that Android specific bugs are more
prevalent in Android apps than bugs related to an app logic.
Another major challenge is security implementation.
Security in Android [5, 6, 7] can be implemented at both
system and application levels. At the application level,
security is implemented largely through the manifest file so
developers must have deep understanding of it but studies [8,
9] suggest quite opposite. In addition to Android specific
challenges, generic challenges of writing a configuration file
persist. One major generic challenge is dependency and
correlation among configuration parameters.

It is irrefutable that developers make mistakes.
Developers on Android platform are not exceptions. A quick
search of Stack Overflow website through the keyword
“android manifest error” retrieved 8,813 issues [10]. It
suggests that developers are indeed making mistakes in
writing the manifest file. One common mistake is using
incorrect prefix when declaring permissions in the manifest.
For example, INSTALL_SHORTCUT permission must use
“com.android.launcher.permission.” prefix but developers
have used “android.permission.” prefix. Such incorrect
permissions cause security exceptions during runtime.
Mistakes committed by developers can be mitigated through
testing but testing Android apps is a challenging task [11, 12,
13, 14]. Though recent advancement in tools and techniques
for testing Android apps [15], configuration-aware testing
techniques are hardly available for Android apps.

Configuration errors, including errors in an Android
manifest file, can be detected either indirectly through testing
apps or directly through analyzing configuration files.
Configuration parameters in the Android manifest file
capture various aspects of an app such as security, user
interface, execution etc. but most of the available testing

techniques are designed to test only one aspect of an app.
Given the challenges in testing Android apps and the
limitations in testing configuration errors, it is likely that
some configuration errors will go unnoticed during testing. A
more reliable option is to directly analyze configuration files
for errors. One widely used analysis technique is a rule-based
error detection. However, major challenges in rule-based
error detection are to define and manage effective rules [3].

One key goal of this paper is to automatically detect
developer mistakes in the manifest file. Towards this goal,
one of our key contribution in this paper is a rule-based
static analysis tool named ManifestInspector. The tool
analyzes an Android manifest file and generates a warning
message if any configuration parameters violate the specified
rules. The source code of the tool is available in public
domain [16]. We used the tool to perform the empirical study
and it generated total 59,547 configuration errors
containing 478 unique errors from 11,110 apps. While many
of those errors are simple misconfigurations which a
developer should avoid, we also found several errors which
have serious consequences. Only 2,373 apps, among studied
apps, do not have any configuration errors. The complete
report is publically available for download [17].

In some extent, developer mistakes can be prevented if
the developer has prior knowledge of the types of mistakes
committed. Towards this goal, another key contribution in
this paper is to report and study mistakes committed by
developers in writing Android manifest files. Mistakes can be
as serious as those which manifest as crash during an app
execution and may lead to uninstallation of the app. On the
other hand, mistakes can also be those which may go
unnoticed to both users and developers. For example, an app
may not be available for download in some devices because
a mistake in a configuration parameter gives false impression
that the device requires certain hardware to run the app. We
performed an empirical study on Android manifest files of
13,483 real-world Android apps. To the best of our
knowledge, we are the first to report developer mistakes in
writing the manifest file based on a large scale empirical
study.

The remainder of this paper is organized as follows.
Section II presents an overview on the Android manifest file
and discusses related works. Section III presents an overview
of the ManifestInspector tool. Section IV presents key
empirical results on developer mistakes in writing the
manifest file. In Section V, we discuss key reasons behind
developer mistakes. We also discuss threats to validity and
limitations in Section V. Finally, Section VI concludes the
paper.

II. BACKGROUND

A. Android Manifest Overview

Android manifest [18] is an essential configuration file in
each Android app. Android system must have the file along
with the app before it runs any app’s code. The file is written
manually by developers in XML format. The structure of the
manifest file is shown in Figure 1. Currently, it has total 26
different elements with 175 different attributes or

configuration parameters. These configuration parameters
control various aspects of an app such as execution,
performance, compatibility, security, etc. Some parameters
come into play as early as apps get installed into Google Play
store while many parameters play role only during apps
execution.

Figure 1. Manifest file structure

One key function of the manifest file is to control
execution behavior of an app’s components. Android apps
are composed of four kinds of components: activities,
services, broadcast receivers, and content providers. These
components perform distinct tasks. All the components of an
app, which the system can launch, must be declared in the
manifest file through <activity>, <service>, <receiver>, or
<provider> elements. The component elements must be
declared inside the <application> element. The components
which are not declared inside the <application> element
cannot be launched by the system. The attributes in the
component elements and the application element define
properties for the components and the app respectively.
Some attributes can be defined for both app and components.
In such cases, if properties defined by an attribute in
application and component elements are different then the
properties of the component overrides the properties of the
application.

In Android apps, a component can be launched by other
apps. Such components are called exported components and
the capability must be declared by the components in the
manifest file. A component can be explicitly exported by
setting its android:exported attribute to true. If the attribute
is not defined then the default behavior depends on <intent-
filter> elements. Except content provider components,
presence of one or more <intent-filter> elements inside a
component element implicitly exports the component. The
<intent-filter> elements advertise capability of a component
to handle intents sent by other apps. The capability is

specified through <action>, <category>, and <data> sub-
elements of an <intent-filter> element.

An Android manifest file plays vital role in implementing
permission-based security at the application level.
Permissions are defined, declared, and enforced through
various elements and attributes of the manifest file. In
Android apps, sensitive system resources are protected with
system-defined permissions but sensitive app resources such
as exported components should be protected with
permissions defined by developers. Such custom permissions
are defined through <permission> elements. The defined
permissions can be enforced at both application level and
component level through an android:permission attribute of
an <application> element and component elements
(<activity>, <service>, <receiver>, or <provider>)
respectively. An app willing to access resources protected by
permissions must declare the permissions through <uses-
permission> or <uses-permission-sdk-23> elements.

In addition to the core app behavior, configuration
parameters of the manifest file can affect an app’s external
entities such as Google Play store. Android apps are
distributed through central channels usually called stores.
Though existence of third-party stores, majority of Android
apps are distributed through official Google Play store. Some
configuration parameters of the manifest file play crucial role
in availability of apps in the Play store. Google Play store
decides whether an app is compatible with the devices based
on some configuration parameters. Users can view and
download only those apps from the Play store which are
compatible with their devices.

An Android manifest is a single file but its configuration
parameters control various internal as well as external
entities of an app. Any mistakes in the manifest file can have
huge impact on security, reliability, and availability of apps.

B. Related Works

Mistakes committed by developers in writing Android

manifest files have never been studied before primarily.

However, some studies have been performed, specifically

targeting security aspect of Android apps. ComDroid [19]

examines Android manifest files and generates a warning

message if the exported components are not protected with

permissions. Corpus of other studies [9, 20, 21, 22, 23]

investigate the use of permissions against exported

components. Barrera et al. [24] presented a methodology for

the empirical study of permission-based security using a

Self-Organizing Map. In the study, they mainly observed

two kinds of mistakes. Developers used duplicate

permissions and they requested permissions that do not

exist. Separate investigations by Au et al. [25], Bartel et al.

[26], and Felt et al. [27] discovered that developers are

using more permissions (over-privileged) than required by

apps. Through manual inspections, Watanabe et al. [28]

observed that over-privileged apps are the result of

developer mistakes in writing the manifest file. In

comparison to these techniques, we specifically analyze

Android manifest files and report all kinds of mistakes,

including security-related mistakes. Reporting over-

privileged apps require source code analysis which we

currently do not perform.

The only tool available for detecting errors in Android

manifest files is an Android lint [29]. It is a static analysis

tool which performs analysis on entire source files of an

app, including an Android manifest file. It checks for

potential errors as well as various performance, security,

usability, accessibility, and other issues for optimization. In

comparison to ManifestInspector, which only analyzes the

Android manifest file, lint performs analysis on entire

source files which is a significant benefit and it results into

another major advantage. Values of some configuration

parameters in the manifest file depend on other source files.

The correctness of those values can only be verified if a tool

perform analysis on entire source files. Despite several

significant advantages of using lint, ManifestInspector

performs better when it comes to detecting errors in the

Android manifest file. The sole reason is the number of

effective rules defined by ManifestInspector. Currently, lint

(in Android Studio 1.5) defines only 30 rules related to an

Android manifest file whereas ManifestInspector defines

116 rules. ManifestInspector has 11 rules overlapped with

the lint. We have excluded 8 rules specified by the lint

which are source code dependent. We have also excluded

remaining 11 rules defined in the lint which are less

impactful.

In sharp contrast to Android apps, configuration errors

have been well studied in system software. Yin et al. [30]

performed characteristic studies of real-world configuration

errors. Some of their findings about the cause of

misconfigurations are consistent with our empirical results

discussed in Section IV. Xu et al. [31] investigated the

complexity of configuration due to large number of

configuration parameters and their value space. They further

studied the effectiveness of configuration simplification and

configuration navigation approaches in reducing the

complexity. Exhaustively testing large number of

configuration parameters is expensive and may be infeasible

in practice. The problem is addressed by various researchers

[32, 33, 34, 35, 36] through combinatorial interaction

testing, configuration prioritization, and symbolic evaluation

techniques. Researchers have also proposed tools and

techniques [37, 38, 39, 40, 41, 42, 43] to detect and fix

configuration errors. In comparison to these configuration

error detection techniques, our tool uses a rule-based error

detection technique which requires domain specific

customizations.

III. MANIFESTINSPECTOR – A RULE-BASED

STATIC ANALYSIS TOOL

ManifestInspector is a rule-based static analysis tool for
detecting errors in Android manifest files. The tool is written
in Java programming language. It is available as an open
source tool [16]. An overview of the ManifestInspector tool
is shown in Figure 2. It takes an Android manifest file as
input then it parses the manifest file using a DOM parser and

extracts structural information as well as values of attributes.
The correctness of the extracted information is then verified
against the stored valid information through predefined rules.
For simplicity, we have used text files to store the valid
information which can be easily edited. If the tool detects
any violations of the rules then it reports the violations as
warning messages.

Figure 2. ManifestInspector overview

The ManifestInspector tool currently defines 116 rules
which can be mainly classified into three categories. First
category of rules verify organization of elements and
attributes within the manifest file. This directly relates to the
syntax of the manifest file. The rules specifically check two
types of mistakes. Misplaced elements and attributes defined
by the system and presence of elements and attributes which
are not defined by the system. Second category of rules
verify values of attributes. In addition to incorrect values, the
rules also check empty values. Lastly, third category of rules
verify correlation and dependency among attributes and
elements. We extracted all the rules manually by going
through the specification document of the Android manifest
file [18].

One integral part of the tool is a database in the form of
text files. One major advantage of using text files as a
database is that even novice developers can easily edit the
data. Developers may have to edit the data because the
elements and attributes of the manifest file may be added or
removed with the release of new versions of Android. The
database stores all the valid elements and attributes of the
manifest file. For each element, it stores valid attributes the
element can contain and valid child elements. The database
also stores valid attributes values.

The tool has been evaluated on Android manifest files of
13,483 real-world Android apps and the key evaluation
results are discussed in Section IV. Out of 116 rules defined
by the tool, the apps in the dataset violated 75 rules. The tool
found total 59,547 possible developer mistakes with 478
unique mistakes in 11,110 apps. The tool did not find any
mistakes in 2,373 apps.

IV. EMPIRICAL RESULTS

The empirical study was performed on 13,483 free
Android apps downloaded from Google Play store during
May and June of 2015. We downloaded top 500 free apps
from each category displayed in the Play store. Some
categories had listed less than 500 top free apps. The Play
store was localized to United States using Tor browser [47].
After downloading all the apps which contained total 13,944
apps, we removed duplicate apps which were listed in more
than one categories. We also removed duplicate apps with
different versions. The downloaded apps were in APK
(Android Application Package) format. We used Apktool

[48] to extract the manifest file of each app. We then
performed analysis on those extracted manifest files of
13,483 apps using our tool ManifestInspector. The tool
found total 59,547 misconfigurations among 11,110 apps.

An overview of reported misconfigurations is shown in
Figure 3. The reported misconfigurations are categorized into
incorrect attribute values, misplaced attributes, incorrect
attribute names, misplaced elements, incorrect element
names, incorrect correlation and dependency among
attributes and elements, and others. The others category
include misconfigurations such as deprecated elements and
duplicate elements. The impact of these misconfigurations
on apps are shown in Figure 4. As shown in the figure, the
level of impact has been classified into high, medium, and
low. The high level misconfigurations directly affect
functioning of apps. Some of the functionalities of apps will
not perform correctly if the high level misconfigurations are
not corrected. The medium level misconfigurations do not
directly affect functioning of apps but these
misconfigurations will affect overall quality of apps. For
example, incorrectly implemented <supports-screens>
elements may affect UI of apps when displayed on different
screen size devices. The low level misconfigurations do not
directly affect apps. However, developers need to aware of
these misconfigurations. For example, we found several
attribute names used by developers which are not part of the
manifest file but they should be declared in other XML files.
The level of impact for misplaced attributes category has not
been shown in the figure because it requires analysis of
elements in which the misplaced attributes should be
declared. However, we manually checked some of the apps
and found that these misconfigurations can severely affect
apps. For example, we found 25 apps in which an
android:permission attribute has been declared in <intent-
filter> elements instead of <receiver> elements.

Figure 3. Overview of reported misconfigurations

Figure 4. Impact of misconfigurations

In this paper, we discuss only those developer mistakes
or misconfigurations which are either present in large
quantity or have high significance. Interested readers can
download the complete report [17]. The mistakes are
classified into five major categories based on an app’s areas
which they affect: user interface, performance, execution,
security, and compatibility.

A. App User Interface

Android TV home screen banner. A banner in an app
can be implemented through an android:banner attribute.
The attribute can be used in <application> and <activity>
elements for default banner in all activities and a specific
banner in an activity respectively. An activity represents a
user screen in Android apps. The banner is used to represent
an app in an Android TV home screen. An app intend to run
on TV devices must declare a
CATEGORY_LEANBACK_LAUNCHER intent filter in an
activity. Thus, a dependency exists between the Android
banner and the intent filter. Declaring an android:banner
attribute is useless without declaring a
CATEGORY_LEANBACK_LAUNCHER intent filter because
the app will not be considered as a TV app. On the other
hand, if the intent filter is used without the android:banner
attribute then the TV home screen will not display the app. A
developer must declare both the banner and the intent filter
in a TV app. 170 apps such as com.asg.hangerfree_1.94 and
com.appquiz.smart.games_2.20 in our dataset declare
android:banner attributes without declaring the intent filter.
On the other hand, 301 apps such as
com.babytv.LearningGames_1.42 and
com.autodesk.tinkerplay_1.0.1 declare
CATEGORY_LEANBACK_LAUNCHER intent filters
without declaring the android:banner attribute. These rules
are also defined by the lint tool.

Up navigation. All screens, except home screen, of an
app should offer users a way to navigate to the logical parent
screen by pressing the Up button in the action bar. The
feature is implemented by setting the
android:parentActivityName attribute of <activity>
elements. The value of android:parentActivityName
represents a logical parent activity and it must be declared in
the manifest file using an <activity> element. We found 94
activity components in 55 apps such as
com.bankrate.auto_1.06 and com.booking_8.0.2 which
declare android:parentActivityName attributes but the apps
fail to declare the logical parent activity in the manifest file.

Task re-parenting. A task is a collection of activities
with which users interact when performing a certain job.
Tasks are managed by Android system. However, certain
behavior of a task can be controlled by setting some
attributes of <activity> elements. One such attribute is an
android:allowTaskReparenting. It controls movement of an
activity from the task that started it to the task it has an
affinity for when the task is next brought to the front.
Effectiveness of this attribute depends on the launch mode of
the activity. An activity with a launch mode singleTask or
singleInstance can only be at the root of a task so re-
parenting is only allowed in standard and singleTop launch

modes. The dataset has 228 activities in 203 apps such as
com.boxedup_1.1 and com.cfinc.coletto_1.7.10 which use
task re-parenting with a launch mode singleTask or
singleInstance.

Theme. A default custom theme for all the activities and
a custom theme for a specific activity can be implemented
through android:theme attributes of <application> and
<activity> elements respectively. The theme implemented
through an <activity> element overrides the theme
implemented through an <application> element. If the
android:theme attribute is not set in <activity> or
<application> elements then the activities use the default
system theme. We found 1,081 apps such as
com.chili.monstertruck1_2.1 and
com.ciegames.RacingRivals_4.0 in which custom themes
have been implemented through incorrect elements such as
<manifest>, <uses-library>, <meta-data>, <activity-
alias>, and <service>. These apps will use the default
system theme instead of the defined custom themes.

Activity’s main window versus soft keyboard. The
state of a soft keyboard and the adjustment made to an
activity’s main window with respect to the soft keyword can
be controlled using an android:windowSoftInputMode
attribute of <activity> elements. Developers must use
system-defined state or adjust values for the attribute. The
value can be one state or adjust value or it can be a
combination of one state value and one adjust value
separated by a vertical bar (|). Setting multiple state or adjust
values has undefined results. We found 58 activities in 10
apps such as com.creditkarma.mobile_1.2.3 and
com.fingersoft.hillclimb_1.17.7 which have multiple state or
adjust values. We also found 636 incorrect state or adjust
values in 315 apps such as com.frogmind.badland_1.7173
and com.gismart.guitar_2.3.0. The attribute
android:windowSoftInputMode can be used only in
<activity> elements but it has been used in several other
elements such as <manifest>, <application>, <activity-
alias>, and <provider> in 131 apps.

B. App Performance

Large heap. The attribute android:largeHeap of an
<application> element specifies whether an app’s process
should be created with a large Dalvik heap. Setting the
attribute value to true can only guarantee the increase in
memory if the device has sufficient memory available. The
attribute is effective only when declared in an <application>
element. We found 59 apps such as
com.linhnv.apps.memecreator_1.3 and
com.lybrate.phoenix_2.1.6 which declare the attribute in
incorrect elements such as <manifest>, <supports-screens>,
<activity>, and <service>.

Hardware acceleration. A hardware-accelerated
OpenGL renderer is available to apps starting from Android
API level 11. It is enabled by default starting from API level
14 but it can be controlled by developers using an
android:hardwareAccelerated attribute of <application>
and <activity> elements. The attribute declared in other
elements cannot have any effects on the default behavior.
The dataset has 219 apps such as

com.magnetic.openmaps_4.39 and com.mailboxapp_2.0.3
which declare the attribute in incorrect elements such as
<manifest>, <permission>, <supports-screens>, <service>,
and <receiver>.

C. App Execution

Components declaration. Each component of an app
must be declared in the manifest file using <activity>,
<service>, <receiver>, or <provider> elements. The
immediate parent of these elements must be an
<application> element. The components which are not
declared or incorrectly declared in the manifest file cannot be
launched by the system. Table 1 shows the components
which are declared inside incorrect elements in several apps
such as com.miniclip.soccerstars_2.0.1 and
com.mobigrow.bankescape_1.0.

Table 1. Components declared incorrectly

Component type Incorrect parent

elements

apps # components

<activity> <manifest> 30 67

<service> <manifest> 36 55

<receiver> <manifest> 59 66

<provider> <manifest> 1 1

<activity> <activity> 2 2

<service> <activity> 3 3

<receiver> <activity> 2 2

<receiver> <service> 1 1

<receiver> <receiver> 1 2

<service> <receiver> 1 1

Duplicate components. Single instance of all the
components of an app must be declared in the manifest file.
A component is uniquely identified by its class name which
is also used as a value of an android:name attribute in
<activity>, <service>, <receiver> and <provider>
elements. Each component can have unique execution
behavior which is defined through its various attributes.
Duplicate components with different attributes can cause
unexpected behavior during an app execution. We found 599
apps such as com.noodlecake.anothercasesolved_1.3.2 and
com.nextmedia.gan_2.1.0 in the dataset which declare
duplicate components.

Handling configuration changes at runtime. When a
configuration change occurs at runtime, an activity gets shut
down and restarted by default. The default behavior can be
overridden by setting an android:configChanges attribute of
<activity> elements. If a configuration listed in an
android:configChanges attribute changes at runtime then the
activity keeps running and calls onConfigurationChanged()
method. Any mistakes in declaring an
android:configChanges attribute brings the activity to its
default behavior. We found 121 cases in 116 apps such as
com.ratrodstudio.skateparty2lite_1.12 and
com.onteca.CannonDefense_3.8 where the attribute is
declared as configChanges instead of
android:configChanges. We also found 50 cases in 15 apps
such as com.speedway.mobile_2.1 and
com.passenger.mytaxi_4.80.22 where the attribute values are
empty. In addition to these mistakes, we found 363 cases
where the attribute is declared in incorrect elements such as

<manifest>, <application>, <meta-data>, <activity-alias>,
<service>, <receiver>, and <action>.

Events handled through dynamic broadcast receivers.
Broadcast receiver components handle system as well as
apps generated broadcast events. Like other components,
broadcast receiver components need to be registered in the
manifest file but, unlike other components, it can also be
declared dynamically. In fact, some system events can only
be handled by dynamic broadcast receiver components.
Broadcast receiver components declared in the manifest file
cannot handle such events. Table 2 shows the system events
which must be handled through dynamic broadcast receivers
but developers have handled them incorrectly in several apps
such as com.trendmicro.tmmspersonal_6.0 and
com.iconnect.app.globalthemeshop_1.9.
Table 2. System events incorrectly handled through static receiver instead

of dynamic receiver components

System Events (actions) # apps # static receiver

components

BATTERY_CHANGED 9 20

CONFIGURATION_CHANGED 3 8

SCREEN_ON 44 54

SCREEN_OFF 35 41

TIME_TICK 3 9

Intent filters without actions. An exported component
advertises its capability through <intent-filter> elements in
the manifest file. Another app can request the exported
component to perform a task through an intent object. An
intent describes an operation to be performed. A request to
perform a task can only be processed by the component if the
requested task matches with the advertised task. An intent
filter advertises a task using <action>, <data>, and
<category> elements. An <action> element specifies an
action to be performed. An intent filter must contain at least
one action otherwise intents with actions cannot go through
the intent filter. It means the component cannot receive
requests to perform a real task. The dataset has 1,270 intent
filters in 351 apps such as com.intuit.quickbooks_3.8 and
com.kiwi.enemylines_2.3.7 which do not contain an
<action> element. In other 29 cases such as
com.lunagames.jurassicvr_1.1.0 and
com.miniclip.extremeskater_1.0.7, the value of the
android:name attribute of an <action> element is empty. It
implicates the similar behavior as an intent filter without an
action.

Wrong data format in intent filters. A <data> element
of an intent filter specifies the data on which tasks performed
by a component can operate on. It is specified through
various attributes. The specification can be a data type
(MIME type), a URI, or a combination of a data type and a
URI. A URI is specified by separate attributes for each of its
parts as scheme://host:port[path|pathPrefix|pathPattern].
The attributes of a URI are optional but mutually dependent.
For example, if schema is not specified then all other URI
attributes are ignored. Similarly, if host is not specified then
port and all path attributes are ignored. According to the
Android specification, a <data> element must contain a
MIME type or a schema but our dataset has 30 <data>
elements in 7 apps such as com.touchsurgery_4.5.1 and
com.univision.android_1.0.13 which contain neither a MIME

type nor a schema. We also found 222 <data> elements in
187 apps which specify port or path attributes without
specifying a host attribute.

Non-exported components with intent filters. A
component can be used only by the declaring app or it can be
used by other apps depending on whether the component is
exported or not. The behavior is defined by using an
android:exported attribute of the component. If the attribute
value is true then the component is exported and it can be
used by other than the declaring app. On the other hand, if
the value is false then the component can be used only by the
declaring app or the apps which have same user id as the
declaring app. If the attribute is not declared explicitly then
the default behavior depends on whether the component
contains an intent filter. Presence of one or more intent filters
implicate that the component is exported. We found 1,441
activity components in 360 apps, 656 service components in
417 apps, and 1,368 receiver components in 880 apps which
explicitly set the android:exported attribute to false but
contain intent filters.

In strict specification terms, declaring intent filters in
non-exported components is incorrect but it has one key
practical usability. Intent filters can receive implicit intents
not only from other apps but also from the system but, unlike
apps, system generated implicit intents can be received by
non-exported components too. In fact, it is highly advised to
make the components, which receive only system events,
non-exported due to known security vulnerabilities [19].
Currently, ManifestInspector cannot specifically recognize
system events so we have reported all non-exported
components with intent filters as violations.

Exported components without intent filters. A
component can be launched through intent objects explicitly
by specifying its class name and implicitly by specifying
properties of a task performed by the component. An
exported component is not supposed to be launched
explicitly by other apps because they don’t have the
component’s class name. On the other hand, an implicit
intent cannot be delivered to the components which do not
declare intent filters. It means exported components without
intent filters will behave almost similar to non-exported
components with additional security risk. Adversaries can
get the component’s class name by reverse engineering the
app and then they can send malicious intents explicitly.
Thus, it is advised to make such components non-exported.
We found 2,007 activity components in 1,164 apps, 426
service components in 314 apps, and 124 receiver
components in 96 apps which are exported without intent
filters.

D. App Security

Defining permissions. Permissions in Android apps can
be categorized into system permissions and custom
permissions. Sensitive system resources are protected with
system permissions which are pre-defined by the system.
Developers do not have to define them in the manifest file.
On the other hand, sensitive app resources are protected with
permissions defined by developers in the manifest file.
Developer-defined permissions are called custom

permissions. Permissions are defined using <permission>
elements whose immediate parent element must be
<manifest>. In the dataset, we found 63 system permissions
defined in 46 apps such as coo.videokikme.android_1.0.3 and
org.adw.launcher_1.3.3.9. Defining system permissions does
not have any serious implications. One mistake which does
have serious implication is defining custom permissions in
inappropriate places. We found 8 custom permissions
defined in 8 apps whose immediate parent element is
<application> instead of <manifest>. Resource protected
with such incorrectly defined custom permissions are indeed
unprotected.

Enforcing permissions – unprotected components.
Custom permissions are used to protect apps’ resources. One
key apps’ resource is a component. A component may
perform sensitive tasks such as recording phone calls. Such a
component, if exported, must be protected against
unauthorized access. At the component level, permissions
are enforced through an android:permission attribute of
<activity>, <service>, <receiver>, and <provider>
elements. At the application level, permissions are enforced
through an android:permission attribute of the
<application> element. We found 799 cases in 763 apps
such as com.adrenalinecrew.RSF2_1.4 and
com.akadilabs.airbuddy_2.5.1 where the android:permission
attribute is used in incorrect elements such as <action>,
<intent-filter>, <manifest>, and <uses-sdk> resulting into
unprotected components or apps.

Non-exported components are well-protected because
they are confined within an app execution space. On the
other hand, exported components can be accessed by any
apps including malicious apps. Thus, the exported
components which perform sensitive tasks must be protected
with permissions. In strict terms, the exported components
which does not perform sensitive tasks should also be
protected because those components may become
accessories in accessing protected sensitive components. The
vulnerability is widely known as privilege escalation attack
[9, 21]. As shown in Table 3, large number of exported
components are unprotected in the dataset. The dataset also
has non-exported components protected with permissions as
shown in Table 4 which indicates that either the developers
don’t know how to implement security or they are
overcautious.

Table 3. Unprotected components

Exported component

type

apps # unprotected exported

components

Service 1105 1793

Receiver 6469 15825

Provider 1175 1421

Table 3 reports all unprotected exported components but,
in reality, these exported components may not perform
sensitive tasks or act as accessories in privilege escalation
attack. Unnecessarily protecting exported components may
jeopardize inter-app communication model [19] which is
widely used in Android. This is one of the reasons why we
have not reported unprotected activity components. Inter-app
communication is mainly achieved through activity
components. Another key reason to exclude activity
components is the level of security risk. Activity components

represent UI screens with which users interact. An observant
user can identify malicious behavior during interaction so
activity components possess minimum security risk in
comparison to other components which can perform tasks
without user intervention.

Table 4. Non-exported components protected with permissions

Non-exported

component type

apps # non-exported protected

components

Service 256 421

Receiver 21 53

Provider 53 70

Declaring permissions. An app willing to access
permission-protected resources must declare the permissions
through an android:name attribute of <uses-permission> or
<uses-permission-sdk-23> elements. The declared
permissions are granted by users during install-time or run-
time depending on the Android versions. Any mistakes in
declaring permission names implicate that the app accesses
resources without declaring the required permissions. If such
an app tries to access the resource during execution then a
security exception is thrown. We found 826 incorrect
permission names in 603 apps, mostly caused by typos.
Some incorrect permissions originated from developer’s
guess such as ACCESS_LOCATION instead of
ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION in
com.androidapplication.geeksquad.gsa.one_2.1 app. Some
also originated from an incorrect prefix (package structure)
used by system permission names. Most of the system
permission names are defined with “android.permission.”
prefix but there are other prefixes too. For example, we
found android.permission.INSTALL_SHORTCUT
permission name instead of
com.android.launcher.permission.INSTALL_SHORTCUT
declared by several apps such as
com.bestfreegames.goat_2.2.6 and
com.GavvaGames.ShareLand_1.050.

An incorrect permission name wasn’t the only problem we
encountered when it comes to declaring permissions. We
also found several mistakes in how and where the
permissions are declared. Permissions are declared using
<uses-permission> or <uses-permission-sdk-23> elements
whose immediate parent element must be <manifest>. As
shown in Table 5, incorrect elements as well as incorrect
parent elements were used for declaring permissions in the
dataset. These mistakes have same implication during app
execution as declaring incorrect permission names. One
mistake which does not have any severe implications is
declaring duplicate permissions. We found 3,290 duplicate
permissions declared in 1,116 apps.

Table 5. Permissions declared incorrectly

Incorrect elements Incorrect parent

elements

apps #

elements

<android:uses-
permission>

- 212 240

<user-permission> - 5 6

<use-permission> - 1 1

- <application> 41 94

- <activity> 1 2

- <intent-filter> 2 2

Like sensitive resources, some sensitive actions are
protected with system-defined permissions. An app cannot
receive those protected actions without declaring the
required permissions. It means the app will not be able to
perform the intended task if the required permissions are not
declared. Table 6 shows the protected actions used by the
apps in the dataset without declaring the required
permissions. For example, com.gerth.Zoo_Scratch_1.95 app
declares an ACTION_BOOT_COMPLETED action without
declaring the RECEIVE_BOOT_COMPLETED permission.
Similarly, com.google.android.gm app declares an
ACTION_DEVICE_ADMIN_ENABLED action without
declaring the BIND_DEVICE_ADMIN permission.
Table 6. Protected actions used without declaring the required permissions

Protected actions Missing required

permissions

#apps

ACTION_BOOT_COMPLETED RECEIVE_BOOT_COMPLETED 560
ACTION_DEVICE_ADMIN_ENABLED BIND_DEVICE_ADMIN 76
ACTION_SET_ALARM SET_ALARM 5
ACTION_SET_TIMER SET_ALARM 2
ACTION_NEW_OUTGOING_CALL PROCESS_OUTGOING_CALLS 5
ACTION_PHONE_STATE_CHANGED READ_PHONE_STATE 3
ACTION_STATE_CHANGED BLUETOOTH 18
ACTION_DISCOVERY_FINISHED BLUETOOTH 1
ACTION_DISCOVERY_STARTED BLUETOOTH 1
ACTION_LOCAL_NAME_CHANGED BLUETOOTH 1
ACTION_SCAN_MODE_CHANGED BLUETOOTH 1
ACTION_ACL_CONNECTED BLUETOOTH 1
ACTION_ACL_DISCONNECTED BLUETOOTH 1
ACTION_ACL_DISCONNECT_REQUESTED BLUETOOTH 1
ACTION_BOND_STATE_CHANGED BLUETOOTH 1
ACTION_CLASS_CHANGED BLUETOOTH 1

ACTION_FOUND
BLUETOOTH &

ACCESS_COARSE_LOCATION
3

ACTION_NAME_CHANGED BLUETOOTH 1

E. App Compatibility

Features used by apps. One of the important elements of

the manifest file, which is largely undermined by

developers, is a <uses-feature> element. This element has

nothing to do with the Android system or an app’s execution

but it plays a key role in availability of apps on devices. The

element has two key attributes: android:name and

android:required. The android:name attribute specifies a

hardware or software feature used by an app whereas the

android:required indicates whether the specified feature is

required by the app. The android:required attribute with

true value indicates that the app cannot function if the

specified feature is not present on devices. Google Play

store filters such apps from users on devices which do not

provide the required features. On the other hand, false value

indicates that the app prefers to use the feature if present on

the device but it can function without the specified feature.

Google Play store does not filter such apps.

Developers may forget to declare features explicitly or

they may use incorrect feature names in the android:name

attribute. In such cases, Google Play store implicitly finds

features required by apps. The Play store uses <uses-

permission> elements as a main source for determining

implicit features. For example, if an app uses an

ACCESS_WIFI_STATE permission and it does not explicitly

declare an android.hardware.wifi feature then the Play store

implicitly assumes that the hardware is required to run the

app even the app can run without the hardware. Android

documentation states that the absence of explicit declaration

of a feature should be considered as an error. We found

12,287 instances of features which have not been declared

explicitly in 7,615 apps such as

com.google.android.stardroid_1.6.4 and

com.gotv.crackle.handset_4.4.4.5. We also found 283 cases

in 209 apps such as com.groupme.android_5.3.3 and

com.hybridforge.oppl_1.0.4 where incorrect feature names

have been used. In addition to these mistakes, developers

have used incorrect elements such as <uses-featurea>,

<usesfeature>, <use-feature>, and <used-feature>. They

have also used correct elements at incorrect places. The

<uses-feature> element is declared inside <manifest> but it

has been declared inside <application> in 36 cases among

19 apps. They have also used incorrect attributes such as

name instead of android:name and required instead of

android:required in 34 cases.

Screen orientation. An activity represents a user screen.

The orientation of an activity during execution can be

controlled by an android:screenOrientation attribute of

<activity> elements. Values of the attribute are pre-defined

by the system. Incorrect use of the attribute can cause

unexpected execution behavior as well as compatibility

issues. For example, if a developer declares one of the

landscape or portrait values then it is considered as a hard

requirement for the orientation. Consequently, the Play store

filters the app on devices which do not support the

orientation. We found 55 instances of incorrect attribute

name screenOrientation in 53 apps and 79 incorrect values

in 14 apps. We also found 388 cases in 340 apps where the

android:screenOrientation attribute has been used in

incorrect elements such as <manifest>, <supports-

screens>, <application>, <service>, <receiver>, etc.

Screen configuration. Developers can specify screen

configurations with which an app is compatible using

<screen> elements inside a <compatible-screens> element.

Google Play store uses this element to filter apps on devices

which do not support the listed screen configurations. At

least one instance of the <screen> element must be placed

inside the <compatible-screens> element. Also, the

<screen> element must include both android:screenSize

and android:screenDensity attributes otherwise the element

is completely ignored. We found 7 apps such as

com.backgammonlivefree_3.5.4 and com.experian_1.2.1

which do not include even a single <screen> element inside

a <compatible-screens> element. We also found 2 apps

com.myprograms.glasgow_3.0 and

com.exp.Doctor_at_home_3.0 where only one attribute is

used in a <screen> element. The value of

android:screenDensity is pre-defined by the system. In 447

cases, incorrect screen density values have been used.

V. DISCUSSION

A. Key Reasons behind Developer Mistakes

An Android manifest is a single file but the empirical
results in Section IV clearly indicate that the mistakes in the
manifest file can have huge impact on the security,
reliability, and availability of apps. Developers cannot afford
to ignore such mistakes. In Section IV, we studied the
common mistakes committed by developers in writing the
manifest file. The knowledge of common mistakes alone
cannot prevent developers from committing the same
mistakes. Developers must take measures against the root
causes of those mistakes.

Misplacement of attributes and elements is clearly one of
the leading problems in writing the manifest file. In most of
the cases, frequency of a specific mistake is very high. For
example, an android:theme attribute has been incorrectly
used in the <manifest> element of 1009 apps. It is unlikely
that the developers of all those apps committed human
errors. One explanation is that the mistake may have
originated from the human error but it must have propagated
in large number of apps. Most of the Android developers
learn from the official documentation and source code
repositories. Clearly, the mistakes are propagating from the
repositories with wrong source code. For example, a source
code example for IBM Push Notification implementation has
a mistake of using an android:permission attribute in
<intent-filter> elements [44]. The mistake propagated into
25 apps such as airborne.nbawp_3.1 and
cellfish.capamerica2_1.2. Though human errors are difficult
to prevent, precautions can be taken against error
propagation. Rather than blindly following the wrong source
code, developers should refer official documentation which
is clear and concise about the attributes usages. One solution
which can completely prevent the mistakes is automation of
the manifest file. Though complete automation seems quite
difficult, positions of attributes and elements within the
manifest file can be automated.

During analysis, we observed same mistakes in several
apps developed by the same software development house
which can also be observed by interested readers in our
complete report. It means developers are reusing the
manifest file. Code reuse is prevalent in Android apps [45,
46]. Reuse of code is generally considered as a good practice
under various circumstances. However, we would advise
against the reuse of the manifest file because the file is
highly customized according to an app’s structure and
requirements.

In addition to misplacement of attributes and elements,
incorrect attribute and element names have been used in
many apps. The attribute names in a manifest file are
generally defined with “android:” prefix. In most of the
cases, attribute names are missing the prefix. For example,
developers have used name and configChanges instead of
android:name and android:configChanges respectively.
Incorrect element names have different mistake patterns than
incorrect attribute names. For example, developers have used
<metadata>, <Application>, <support-screens>, and
<android:uses-permission> element names instead of

<meta-data>, <application>, <supports-screens>, and
<uses-permission> respectively. Either the mistakes are
caused by typos or developers have guessed the names which
are incorrect. Again, the solution is to automate the manifest
file so that developers do not have to type attribute and
element names manually.

One leading cause of configuration errors in system
software is correlation and dependency among configuration
parameters. In this aspect, the Android manifest is not far
from the system software. The empirical results in Section
IV clearly indicate that the correlation and dependency
among attributes and elements is a major cause of mistakes
in writing the manifest file. Certainly, these properties
increase the complexity which can be best handled with a
tool support but developers can prevent these mistakes by
carefully reading the documentation. Again, for some
reasons, developers seem to be ignoring the documentation
which clearly defines correlation and dependency for most of
the attributes and elements.

Official documentation is a key source of information for
Android developers. Despite the presence of well-organized
information about the manifest file, the documentation is
missing one key information. For most of the elements and
attributes, the documentation provides information on their
functionalities, correlation, and dependency. However, it
fails to mention implications of their incorrect usages in
several cases. Developers are likely to ignore mistakes in the
manifest file unless they are aware of serious implications of
those mistakes.

B. Threats to Validity and Limitations

The empirical study was performed on top 13,483 free
Android apps downloaded from Google Play store. In
comparison to more than 2.6 million apps currently available
in the Play store, our dataset is very small. Though empirical
results in this paper is valid for studied apps, it cannot be
generalized for other Android apps. Further, the empirical
study was performed only on top free apps. Lower ranking
free apps as well as paid apps may have different results.
However, correlation between quality of apps and their
ranking in the Play store is yet to be established.

Android documentation does not provide a
comprehensive list of system permissions. We obtained a list
of system permissions by querying package manager on
Android 6.0 but system permissions may be added or
removed with the release of new versions of Android. Since
many apps in our dataset target older versions of Android,
we included the removed system permissions in the list. Still,
the list may not be comprehensive. It can affect specifically
two empirical results discussed in Section IV. First, number
of system permissions defined by apps may increase and
second, number of incorrect system permissions used by
apps may increase.

While studying the use of incorrect permissions in
Section IV, we only considered system permissions. Finding
incorrect permissions requires knowledge of correct
permissions. Getting comprehensive list of custom
permissions is far more difficult than getting comprehensive
list of system permissions. Each Android app may define

custom permissions which means all the available apps must
be analyzed to get the complete list of custom permissions.
On top of this, each day hundreds of new Android apps are
added in the Play store which makes the task virtually
impossible.

As with other rule-based static analysis tools,
ManifestInspector has some generic limitations. The rules
defined by ManifestInspector is not comprehensive. We have
defined the rules by reading official Android documentation.
We may have missed some specifications or the
documentation may be incomplete. Also, the tool does not
analyze source code which means rules specifying
configuration parameters dependency on source code cannot
be implemented. ManifestInspector currently does not define
any rules which are source code dependent. We consider this
as one of our future task. Another major limitation is that the
defined rules may become obsolete. Android specifications
related to the manifest file may change with the release of
new Android versions resulting into obsolete rules.

To avail some services provided by private service
providers, developers need to customize the manifest file
which is not in line with the official documentation. For
example, integrating an app with Amazon Device Messaging
requires an <amazon:enable-feature> element to be declared
inside the <application> element. The ManifestInspector
treats all the elements which are not specified by Android as
developer mistakes. We found 101 apps in the dataset
containing <amazon:enable-feature> elements.

VI. CONCLUSION

In this paper, we studied mistakes committed by
developers in writing the Android manifest file. The
empirical results clearly indicate that developers are indeed
making mistakes in writing the manifest file. With some
impact-less mistakes, developers are also making those
mistakes which can have huge impact on security, reliability,
and availability of the apps. Most of the developer mistakes
can be classified into three main categories: misplaced
elements and attributes, incorrect attributes values, and
incorrect dependency and correlation among attributes and
elements. Though, mistakes may have mainly originated
from human errors, propagation of mistakes seems to be the
major cause of their presence in the manifest file. Most of the
mistakes can be prevented if the structure (place of elements
and attributes) of the manifest file is automated. Developers
can also mitigate some of the mistakes by using tools such as
Android lint. We have also presented a tool called
ManifestInspector which can help developers in identifying
and mitigating these mistakes.

ACKNOWLEDGMENT

This research was supported by the BK21 Plus project (SW

Human Resource Development Program for Supporting

Smart Life – 21A20131600005) and Basic Science Research

Program through the National Research Foundation of

Korea (No. NRF-2014R1A1A2058733) funded by the

Ministry of Education, School of Computer Science and

Engineering, Kyungpook National University, Korea.

REFERENCES

[1] AppBrain - Number of available Android apps in the Play Store.
http://www.appbrain.com/stats/number-of-android-apps.

[2] S.L. Lim, P.J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden,
“Investigating country differences in mobile app user behavior and
challenges for software engineering,” IEEE Transactions on Software
Engineering, 41(1), 2015, pp.40-64.

[3] T. Xu and Y. Zhou, “Systems approaches to tackling configuration
errors: A survey,” ACM Computing Surveys (CSUR), 47(4), 2015,
p.70.

[4] C. Hu and I. Neamtiu, “Automating GUI testing for Android
applications,” Proc. of the 6th International Workshop on Automation
of Software Test, 2011, pp. 77-83. ACM.

[5] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android
security,” IEEE security & privacy, 7(1), 2009, pp.50-57.

[6] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of
Android Application Security,” In USENIX security symposium, Vol.
2, 2011, p. 2.

[7] A.K. Jha and W.J. Lee, “Analysis of Permission-based Security in
Android through Policy Expert, Developer, and End User
Perspectives,” Journal of Universal Computer Science, 22(4), 2016,
pp.459-474.

[8] L. Davi, A. Dmitrienko, A.R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” International Conference on
Information Security, 2010, pp. 346-360. Springer Berlin Heidelberg.

[9] A.P. Felt, H.J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission Re-Delegation: Attacks and Defenses,” USENIX
Security Symposium, Vol. 30, 2011.

[10] StackOverflow - Android manifest error.
http://stackoverflow.com/search?q=android+manifest+error.

[11] D. Amalfitano, A.R. Fasolino, P. Tramontana, and B. Robbins,
“Testing Android Mobile Applications: Challenges, Strategies, and
Approaches,” Advances in Computers, 89(6), 2013, pp.1-52.

[12] A.I. Wasserman, “Software engineering issues for mobile application
development,” Proc. of the FSE/SDP workshop on Future of software
engineering research, 2010, pp. 397-400. ACM.

[13] H. Muccini, A.D. Francesco, and P. Esposito, “Software testing of
mobile applications: Challenges and future research directions,” Proc.
of the 7th International Workshop on Automation of Software Test,
2012, pp. 29-35. IEEE Press.

[14] M.E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in
mobile app development,” 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
2013, pp. 15-24. IEEE.

[15] S. Zein, N. Salleh, and J. Grundy, “A systematic mapping study of
mobile application testing techniques,” Journal of Systems and
Software, 117, 2016, pp.334-356.

[16] ManifestInspector - A rule-based static analysis tool.
https://github.com/HiFromAjay/ManifestInspector.

[17] ManifestInspector analysis report.
https://github.com/HiFromAjay/ManifestAnalysisReport/blob/master/
Android_Manifest_Analysis_Report.pdf.

[18] Android Manifest File.
http://developer.android.com/guide/topics/manifest/manifest-
intro.html.

[19] E. Chin, A.P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” Proc. of the 9th international
conference on Mobile systems, applications, and services, 2011, pp.
239-252. ACM.

[20] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y.L. Traon, “Effective inter-component communication mapping in
android with epicc: An essential step towards holistic security
analysis,” Proc. of the 22nd USENIX security symposium, 2013, pp.
543-558.

[21] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert:
Compositional analysis of android inter-app permission leakage,”
IEEE transactions on Software Engineering, 41(9), 2015, pp.866-886.

[22] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” Proc. of the
2012 ACM conference on Computer and communications security,
2012, pp. 229-240. ACM.

[23] L. Li, A. Bartel, J. Klein, and Y.L. Traon, “Automatically exploiting
potential component leaks in android applications,” 13th International
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014, pp. 388-397. IEEE.

[24] D. Barrera, H.G. Kayacik, P.C. van Oorschot, and A. Somayaji, “A
methodology for empirical analysis of permission-based security
models and its application to android,” Proc. of the 17th ACM
conference on Computer and communications security, 2010, pp. 73-
84. ACM.

[25] K.W.Y. Au, Y.F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the
android permission specification,” Proc. of the 2012 ACM conference
on Computer and communications security, 2012, pp. 217-228. ACM.

[26] A. Bartel, J. Klein, M. Monperrus, and Y.L. Traon, “Static analysis
for extracting permission checks of a large scale framework: The
challenges and solutions for analyzing android,” IEEE Transactions
on Software Engineering, 40(6), 2014, pp.617-632.

[27] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” Proc. of the 18th ACM conference on
Computer and communications security, 2011, pp. 627-638. ACM.

[28] T. Watanabe, M. Akiyama, T. Sakai, H. Washizaki, and T. Mori,
“Understanding the inconsistencies between text descriptions and the
use of privacy-sensitive resources of mobile apps,” Eleventh
Symposium On Usable Privacy and Security (SOUPS), 2015, pp.
241-255. USENIX Association.

[29] Android Lint. http://developer.android.com/tools/help/lint.html.

[30] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L.N. Bairavasundaram, and S.
Pasupathy, “An empirical study on configuration errors in
commercial and open source systems,” Proc. of the Twenty-Third
ACM Symposium on Operating Systems Principles, 2011, pp. 159-
172. ACM.

[31] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker,
“Hey, you have given me too many knobs!: understanding and
dealing with over-designed configuration in system software,” Proc.
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 307-319. ACM.

[32] C. Yilmaz, M.B. Cohen, and A.A. Porter, “Covering arrays for
efficient fault characterization in complex configuration spaces,”
IEEE Transactions on Software Engineering, 32(1), 2006, pp.20-34.

[33] E. Dumlu, C. Yilmaz, M.B. Cohen, and A. Porter, “Feedback driven
adaptive combinatorial testing,” Proc. of the 2011 International
Symposium on Software Testing and Analysis, 2011, pp. 243-253.
ACM.

[34] X. Qu, M.B. Cohen, and G. Rothermel, “Configuration-aware
regression testing: an empirical study of sampling and prioritization,”
Proc. of the 2008 international symposium on Software testing and
analysis, 2008, pp. 75-86. ACM.

[35] X. Qu, M. Acharya, and B. Robinson, “Impact analysis of
configuration changes for test case selection,” IEEE 22nd
International Symposium on Software Reliability Engineering
(ISSRE), 2011, pp. 140-149. IEEE.

[36] E. Reisner, C. Song, K.K. Ma, J.S. Foster, and A. Porter, “Using
symbolic evaluation to understand behavior in configurable software
systems,” Proc. of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, 2010, pp. 445-454. ACM.

[37] M. Attariyan and J. Flinn, “Automating Configuration
Troubleshooting with Dynamic Information Flow Analysis,” OSDI,
Vol. 10, 2010, pp. 1-14.

[38] A. Rabkin and R. Katz, “Precomputing possible configuration error
diagnoses,” Proc. of the 26th IEEE/ACM International Conference on

Automated Software Engineering, 2011, pp. 193-202. IEEE
Computer Society.

[39] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
“Range fixes: Interactive error resolution for software configuration,”
IEEE Transactions on Software Engineering, 41(6), 2015, pp.603-
619.

[40] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A.
Kumar, “Context-based online configuration-error detection,” Proc.
of the 2011 USENIX conference on USENIX annual technical
conference, 2011, pp. 28-28. USENIX Association.

[41] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and Y.
Zhou, “Encore: Exploiting system environment and correlation
information for misconfiguration detection’” ACM SIGPLAN
Notices, 49(4), 2014, pp.687-700.

[42] S. Zhang and M.D. Ernst, “Automated diagnosis of software
configuration errors,” Proc. of the 2013 International Conference on
Software Engineering, 2013, pp. 312-321. IEEE Press.

[43] S. Zhang and M.D. Ernst, Which configuration option should I
change?,” Proc. of the 36th International Conference on Software
Engineering, 2014, pp. 152-163. ACM.

[44] IBMPushNotification - a mistake in implementing permission.
http://developer.xtify.com/display/sdk/Getting+Started+with+Google
+Cloud+Messaging.

[45] I.J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A.E.
Hassan, “A large-scale empirical study on software reuse in mobile
apps,” IEEE software, 31(2), 2014, pp.78-86.

[46] I.J.M. Ruiz, M. Nagappan, B. Adams, and A.E. Hassan,
“Understanding reuse in the android market,” IEEE 20th International
Conference on Program Comprehension (ICPC), 2012, pp. 113-122.
IEEE.

[47] Tor Browser - https://www.torproject.org/projects/torbrowser.html.en

[48] Apktool - https://ibotpeaches.github.io/Apktool/

