
PYMIGBENCH: A Benchmark for Python Library
Migration

Mohayeminul Islam
University of Alberta
Edmonton, Canada

mohayemin@ualberta.ca

Ajay Kumar Jha
North Dakota State University

Fargo, USA
ajay.jha.1@ndsu.edu

Sarah Nadi
University of Alberta
Edmonton, Canada

nadi@ualberta.ca

Ildar Akhmetov
University of Alberta
Edmonton, Canada

ildar@ualberta.ca

Abstract—Developers heavily rely on Application Program-
ming Interfaces (APIs) from libraries to build their projects.
However, libraries might become obsolete, or new libraries with
better APIs might become available. In such cases, developers
replace the used libraries with alternative libraries, a process
known as library migration. Since manually migrating between
libraries is tedious and error prone, there has been a lot of
effort towards automated library migration. However, most of
the current research on automated library migration focuses
on Java libraries, and even more so on version migrations of
the same library. Despite the increasing popularity of Python,
limited research has investigated migration between Python
libraries. To provide the necessary data for advancing the devel-
opment of Python library migration tools, this paper contributes
PYMIGBENCH, a benchmark of real Python library migrations.
PYMIGBENCH contains 59 analogous library pairs and 75 real
migrations with migration-related code changes in 161 Python
files across 57 client repositories.

Index Terms—Python library migration, migration-related
code changes, benchmark

I. INTRODUCTION

Developers heavily rely on the Application Programming
Interfaces (APIs) offered by libraries to build software. How-
ever, the libraries and APIs an application depends on may
become obsolete over time [1]–[3]. Libraries may also neg-
atively impact the applications that use them due to critical
vulnerabilities or bugs present in the libraries [4], [5]. Devel-
opers may also find new, better-performing, or easier-to-use
libraries [3], [6], [7]. In all such cases, developers replace the
currently used library with an alternate one, a process referred
to as library migration.

The library migration process typically involves finding
an alternative library with the required functionality (library
mapping), finding the replacements for each usage of an API
of the old library (API mapping), and updating all existing
code that used the old library’s API to now use the new
library’s API while preserving the software’s behavior (client
code transformation). This is a tedious and error-prone task
that developers often dread [5]. Techniques that automate this
entire migration process can save developers time and effort.

Researchers have attempted to automate the different ac-
tivities of the migration process, such as identifying and
recommending alternative (a.k.a analogous) libraries [3], [8]–
[12] and APIs [13]–[19] and transforming client code [17],
[20]–[22]. While it is evident that library migration is an active
research area with lots of advancements, there are still gaps in

the literature. First, most of these techniques focus on Java [3],
[8], [9], [12], [13], [15], [19]–[22]. It is not clear whether these
techniques can be applied to a different programming language
that is not statically typed, such as Python [23], [24]. Second,
most of the client code transformation techniques focus on
version migration (i.e., migration between different versions of
the same library) [20]–[22]. Third, researchers have evaluated
most of the migration techniques by migrating code for a
few arbitrarily selected library pairs with no standard library
migration benchmarks to facilitate evaluation and comparison.

To address these gaps, we mine open-source Python repos-
itories and create a benchmark of Python library migrations,
PYMIGBENCH. PYMIGBENCH has a total of 59 manually
confirmed analogous library pairs and 157 migrations. From
these, 75 migrations between 34 library pairs have associated
code changes in 57 different client repositories. These code
changes span 161 Python files with 375 code change segments.
Researchers can leverage PYMIGBENCH for building Python
library migration tools. Specifically, researchers can study the
real migrations in PYMIGBENCH to understand the types of
code changes that need to be supported for Python library
migration and can use PYMIGBENCH as a ground truth for
evaluating and comparing migration approaches. The dataset
and associated tools are available in our repository1.

II. CONSTRUCTING PYMIGBENCH

We use automated (white boxes) and manual (grey boxes)
steps shown in Figure 1 to construct PYMIGBENCH. We first
fetch and clone Python repositories (Step 1). We then iterate
through the commits in these repositories to identify commits
that potentially contain library migrations, candidate migration
commits (Step 2). We analyze the candidate migration commits
and collect candidate migrations (Step 3). After this, we
confirm analogous library pairs between which we observe
candidate migrations (Step 4), then we confirm the migrations
(Step 5). Finally, we collect the migration-related code changes
from the identified migrations (Step 6).

A. Step 1: Clone repositories

We use SEART [25] to fetch an initial list of Python GitHub
repositories. We set the language to Python, exclude forks
to avoid redundant data, and retrieve 198,883 repositories.

1https://doi.org/10.5281/zenodo.7574849

https://doi.org/10.5281/zenodo.7574849

195,075 repositories

3,152 repositories

4,381 candidate migration
commits

Clone repositories1

Identify candidate
migration commits

2

2,046 repositories

3,617 candidate migration
commits

6,047 library pairs

7,423 candidate migrations

Confirm library pairs4

196 repositories

249 candidate migration
commits

59 analogous library pairs

254 candidate migrations

Confirm migrations5 127 repositories

155 migration commits

49 analogous library pairs

157 migrations

Collect code changes6

Collect candidate
migrations

3

57 repositories

74 migration commits

34 analogous library pairs

75 migrations

161 Python files

375 code segments

Fig. 1: The process of constructing PYMIGBENCH

Note that SEART only includes repositories having 10 or
more stars. Among the 198,883 repositories, we further discard
3,794 repositories that are no longer publicly available and
14 repositories that we could not clone due to miscellaneous
errors. We clone the remaining 195,075 repositories.

B. Step 2: Identify candidate migration commits

We automatically analyze the commits of the cloned repos-
itories to find the candidate migration commits. We use the
following heuristics to identify such commits while excluding
as many non-migration commits as possible. (1) Not a merge
commit: we exclude merge commits because changes in merge
commits are already reflected in the parent branches that we
analyze. (2) Dependencies have changed: since migration is a
replacement of one library with another, the commit must have
both additions and deletions of lines in the dependency file (a
file where the library dependencies are stored). We consider
requirements.txt, environment.yml, pipfile and pyproject.toml
as dependency files. (3) Not a bot-created commit: we ignore
such commits because bot-generated migration commits typi-
cally relate to version updates and do not change the code.

We mark a commit as a candidate migration commit if
all the above criteria are true. We use PyDriller2 to check
the first two criteria. To identify bot-created commits, we
collect commit authors whose names contain the term “bot”
and manually check the authors’ profiles to verify if they are
bots. The above criteria result in 4,381 candidate migration
commits from 3,152 client repositories.

2https://pydriller.readthedocs.io

- coverage==4.5.4
+ coverage>=5.2.1
- nose>=1.3.7
+ pytest-cov==2.11.1
+ pytest==6.2.0

Listing 1: Sample changes in a requirements.txt file

C. Step 3: Collect candidate migrations

Now we automatically analyze changes in the dependency
files of each of the 4,381 commits to identify potential library
replacements, i.e., candidate migrations. Note that more than
one pair of libraries can be replaced in one commit, resulting
in multiple migrations in a single commit.

We first collect the sets of added and deleted libraries from
the dependency file associated with a candidate migration
commit. We then remove the libraries that are present in
both sets, ignoring their versions, because we are looking
for migrations between different libraries. Finally, the cross-
product of these two sets is the set of candidate library
migrations for this commit. For example, in the changeset
in Listing 1, (nose, pytest-cov) and (nose, pytest) are the
candidate library migrations.

We find that the 4,381 candidate commits have 23 candidate
migrations per commit on average, which seems like a large
number of migrations in a single commit because a median
commit has only one candidate migration. After some manual
inspection, we identify that some commits add and delete a
lot of dependencies producing a large number of candidate
migrations with no real migration happening in those commits.
We use Tukey’s fences outlier detection technique [26] and
exclude commits that have more than 9 candidate migrations.
After discarding outlier commits, we are left with 3,617 can-
didate commits having 7,423 candidate migrations between
6,047 unique library pairs. On average, this remaining data
has 2 candidate migrations per commit.

D. Step 4: Confirm library pairs

For a migration to be valid, it must be between an analogous
library pair, i.e., two libraries that provide similar functionality
allowing one to be replaced with the other. Therefore, instead
of manually verifying all 7,423 candidate migrations, we
first identify which of the 6,047 library pairs are analogous.
We notice that most of the library pairs (5,826) have only
one or two candidate migrations. To increase our chances of
reviewing meaningful library pairs, we focus on reviewing 221
pairs with 3 or more candidate migrations.

To confirm that a library pair is analogous, the first two
authors, each having 6 years of industrial experience, indepen-
dently review the library pairs and discuss any disagreements.
We achieve 0.85 Cohen’s kappa score, which means almost
perfect agreement [27]. We look into various documentation
sources (e.g., PyPI pages, official websites, and the libraries’
GitHub repositories) to find if they explicitly mention that the
two libraries are alternatives or that the libraries implement
similar functionality. During our manual review, we find that
some libraries do not offer an API that can be used in client

https://pydriller.readthedocs.io

code such as pyflakes3 and sphinx-material4. Since we are pri-
marily interested in migrations requiring client code changes,
we discard such libraries. Additionally, we discard testing
libraries, because we are interested in application migrations.
We also identify the domains of confirmed analogous library
pairs. The first two authors again independently label the
library domains. We do not use any predefined set of domain
names; therefore the two authors come up with different names
in many cases. The first three authors then discuss the labels
to create a final list of domains (available in our artifact).

We find that 59 of the 221 library pairs are analogous and
offer APIs. These 59 library pairs are from 13 domains and
appear in 254 candidate migrations in 249 commits across 196
repositories. The 59 library pairs contain 99 unique libraries.

E. Step 5: Confirm migrations

We now manually examine the 249 commits containing the
identified 254 candidate migrations to confirm the migrations.
We consider a candidate migration in a commit as a valid
migration if (1) the commit message or code comments in the
commit explicitly indicate the migration, or (2) the commit
has code changes clearly related to the migration. To verify
the migrations, the first and second authors individually review
them and then discuss the results to resolve any disagreements.

At the end of this process, we identify 157 valid migrations
between 49 library pairs in 155 commits from 127 repositories.

F. Step 6: Collect migration-related code changes

A migration commit may contain changes that are not
related to the migration. Therefore, to facilitate the use of
PYMIGBENCH for library migration research, we identify
and record the migration-related code changes that developers
make. For example, Figure 2 shows part of the commit diff for
a migration from requests to aiohttp. The changes on
the removed Lines 31-32 are not related to this migration,
whereas changes on the removed Lines 35-36 are related
since they modify code that originally used the source library.
Therefore, we record removed lines 35-36 and added lines
36-40 as a migration-related code change segment.

The first and second authors individually go through each
of the 155 confirmed commits to identify the migration-
related code changes. The two authors then discuss the code
changes to resolve any disagreements. If they cannot come to
a conclusion, the third author joins the discussion and the three
of them discuss the code changes. We find 75 of the migrations
have migration-related code changes in 375 code segments
across 161 Python files in 57 client repositories. These occur
between 34 library pairs from 11 domains.

III. PYMIGBENCH

PYMIGBENCH includes data of analogous library pairs and
library migrations. We store the data in YAML, diff, and
Python files. All our data are text files and are arranged in
a specific folder structure for easy manual navigation and

3https://github.com/PyCQA/pyflakes
4https://github.com/bashtage/sphinx-material

Fig. 2: Part of the diff file for the migration in Listing 2.

Listing 2: A YAML file describing a migration
source: requests
target: aiohttp
repo: raptor123471/dingolingo
commit: 1d8923a
commit_message: Replace requests with aiohttp
code_changes:
- filepath: musicbot/linkutils.py
lines: [1:1, 35-36:36-40, 98-99:100-104]

access to the data. To facilitate automated use of the dataset,
PYMIGBENCH also comes with a command-line tool.

We store each analogous library pair in its own YAML file,
which includes the names of the source and target libraries
and the domain of the library pair.

We also provide a YAML file for each migration, which
contains the names of the library pair, client repository, commit
hash, modified files, and line numbers of modified code
segments. Listing 2 shows the content of a YAML file for a
migration from requests to aiohttp where the commit message
explicitly mentions that a migration happened in this commit.
It also shows that the code of the linkutils.py file was changed
during the migration. Moreover, the code at lines 1, 35 to 36,
and 98 to 99 in the file were replaced with code at lines 1, 36
to 40, and 100 to 104, respectively, during the migration.

For each Python file containing migration-related code
changes, we provide a git diff file5 that can be viewed with
a standard diff viewer or any text editor. We also provide the
version of the code file that uses the source library (i.e., code
before migration) and the version that uses the target library
(i.e., code after migration). Figure 2 shows part of the Python
file linkutils.py that was modified during the migration
from requests to aiohttp, described in Listing 2.

We provide a Python-based command line tool to allow
automated use of the benchmark. A user can use the tool to
view summaries of the benchmark (i.e. descriptive statistics
of the included data) as well as to query the benchmark by
different dimensions. For example, a user can query: find
all migrations in repo “voice2json” or find all migrations
to target library “aiohttp” or find all migrations in commit

5https://git-scm.com/docs/git-diff# combined diff format

https://github.com/PyCQA/pyflakes
https://github.com/bashtage/sphinx-material
https://git-scm.com/docs/git-diff#_combined_diff_format

1d8923a. This allows other researchers to slice the data for
an evaluation or additional analysis according to the capa-
bilities of the migration techniques they are designing. The
PYMIGBENCH repository contains documentation about how
to use the dataset and the accompanying toolchain.

IV. USES OF PYMIGBENCH

Facilitating library mapping research: We provide a
collection of 59 manually validated analogous Python li-
brary pairs from 13 different domains. There are currently
no techniques that automatically extract analogous Python
library pairs. Researchers can use the library pairs available
in PYMIGBENCH for evaluation or as training data for library
mapping techniques. While the number of library pairs may
be limited for certain types of techniques, researchers can use
this data to identify interesting/differentiating features that can
help build automated identification techniques.

Facilitating migration-related code transformation re-
search: PYMIGBENCH has 75 migrations with code changes
between 34 library pairs in 57 client projects. Library migra-
tion techniques can use these projects in their evaluation. Since
we have already validated migration-related code changes
in these projects, researchers can verify the effectiveness of
library migration techniques by matching the transformed code
with the corresponding code changes in PYMIGBENCH.

Overall, PYMIGBENCH helps researchers in developing
library migration techniques and, equally importantly, in sys-
tematic and fair evaluation and comparison.

V. THREATS TO VALIDITY

Internal validity. We may have missed some potential
migration data for the following reasons. (1) We excluded
forks to avoid analyzing duplicate commits, but a fork may
contain commits not present in the original repository. (2) We
identified dependency files based on commonly used names,
but developers are free to use any name for their dependency
files. We also did not consider the dependencies that may be
declared in setup.py. (3) Our process of identifying migra-
tions assumes that the addition and deletion of dependencies
happened in the same commit, which may not always be the
case [13]. (4) When identifying code changes, we only look
at the commit where the library dependency was updated. (5)
Developers may not always remove a source library from the
dependency file, even if they no longer use it. However, code
changes may be done in later commits as well, therefore, we
may have missed some migration-related code changes. Being
able to identify all the above missing data may potentially
increase the data in PYMIGBENCH. However, this does not
affect the validity of our results, because our main goal is to
build a benchmark of real migrations, not necessarily find all
migrations that happened in repositories hosted on GitHub.

External validity. PYMIGBENCH has migrations between
only 34 library pairs. However, our migration examples are
from 11 different domains, which provides some diversity.

Construct validity. We manually review migrations to iden-
tify migration-related code changes, which relies on the au-
thors’ knowledge of the libraries. To minimize mislabeling, 2

authors each having 6 years of industrial experience reviewed
each library’s documentation to get sufficient knowledge about
the library and then independently reviewed the data.

Even though there were candidate commits from 2,046
repositories, we reviewed commits from a sample of only 708
repositories. To check for sample bias and representativeness,
we ran a Mann-Whitney U test and a Kolmogorov-Smirnov
test to compare various characteristics (repo size, number of
commits, branches, contributors, watchers, and stars) of the
repositories in the full population and in our sample. We found
no statistically significant differences except for number of
commits and branches.

VI. RELATED WORK

Library migration benchmarks: Teyton et al. [8] devel-
oped a frequency based semi-automatic approach to detect
analogous Java libraries. They applied their approach to li-
braries available in the Maven central repository and manually
verified a set of 80 analogous library pairs. In a follow up
work [9], they extend their dataset to 329 analogous Java
library pairs from 32 different domains. He et al. [3] verified
1,434 analogous library pairs from candidate pairs generated
by their analogous library recommendation system. In a fol-
lowup study, they built a benchmark of 3,163 manually verified
Java migration commits [28]. These are all Java benchmarks
and not directly useful for Python library migration.

API mapping and client code transformation: Balaban et
al. [29] developed a technique to migrate the uses of legacy
Java classes. Teyton et al. [13] and Alrubaye et al. [14],
[15] analyze existing migrations to identify API mappings.
PYMIGBENCH can be used to develop similar techniques in
Python. Chen et al. [16] use code and documentation to train
a model for API mapping recommendation without existing
migrations. Along the same lines, SOAR [17] identifies API
mappings based on the textual similarity between API descrip-
tions. SOAR also supports client code transformation using
program synthesis. To the best of our knowledge, SOAR is
the only technique that works for Python, although evaluated
only on one Python library pair. PYMIGBENCH provides an
opportunity for additional evaluation.

Version migration techniques: There are several research
efforts to automatically transform client code to use a different
version of a given library, both for Java [20]–[22], [30]–[33]
and Python [34], [35].

VII. CONCLUSION

In this paper, we presented PYMIGBENCH, the first Python
library migration benchmark. PYMIGBENCH contains a manu-
ally verified dataset of 75 migrations having migration-related
code changes between 34 library pairs, and 157 migrations be-
tween 49 library pairs in total. PYMIGBENCH facilitates future
research on Python library migration by enabling systematic
evaluations and comparisons of library migration techniques.
Researchers can use the data in PYMIGBENCH to derive
insights for building new techniques and understanding the
limitations of the existing techniques.

REFERENCES

[1] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated python
library apis are (not) handled,” in Proceedings of the 28th acm joint
meeting on european software engineering conference and symposium
on the foundations of software engineering, 2020, pp. 233–244.

[2] A. A. Sawant, R. Robbes, and A. Bacchelli, “To react, or not to react:
Patterns of reaction to api deprecation,” Empirical Software Engineering,
vol. 24, no. 6, pp. 3824–3870, 2019.

[3] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, and M. Zhou, “A multi-
metric ranking approach for library migration recommendations,” in
2021 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2021, pp. 72–83.

[4] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2187–2200.

[5] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[6] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging
library migrations: A case study for the apache software foundation
projects,” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). IEEE, 2016, pp. 154–164.

[7] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting third-party libraries: The practitioners’ perspective,” in Pro-
ceedings of the 28th ACM joint meeting on european software en-
gineering conference and symposium on the foundations of software
engineering, 2020, pp. 245–256.

[8] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,”
in 2012 19th Working Conference on Reverse Engineering. IEEE, 2012,
pp. 289–298.

[9] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of library
migrations in java,” Journal of Software: Evolution and Process, vol. 26,
no. 11, pp. 1030–1052, 2014.

[10] C. Chen, Z. Xing, and Y. Liu, “What’s spain’s paris? mining analog-
ical libraries from q&a discussions,” Empirical Software Engineering,
vol. 24, no. 3, pp. 1155–1194, 2019.

[11] F. L. De La Mora and S. Nadi, “Which library should i use?: A
metric-based comparison of software libraries,” in 2018 IEEE/ACM
40th International Conference on Software Engineering: New Ideas and
Emerging Technologies Results (ICSE-NIER). IEEE, 2018, pp. 37–40.

[12] R. El-Hajj and S. Nadi, “Libcomp: An intellij plugin for comparing java
libraries,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1591–1595.

[13] C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discovery of function
mappings between similar libraries,” in 2013 20th Working Conference
on Reverse Engineering (WCRE). IEEE, 2013, pp. 192–201.

[14] H. Alrubaye and M. W. Mkaouer, “Automating the detection of third-
party java library migration at the function level.” in CASCON, 2018,
pp. 60–71.

[15] H. Alrubaye, M. W. Mkaouer, and A. Ouni, “On the use of information
retrieval to automate the detection of third-party java library migration
at the method level,” in 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC). IEEE, 2019, pp. 347–357.

[16] C. Chen, Z. Xing, Y. Liu, and K. O. L. Xiong, “Mining likely
analogical apis across third-party libraries via large-scale unsupervised
api semantics embedding,” IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 432–447, 2019.

[17] A. Ni, D. Ramos, A. Z. Yang, I. Lynce, V. Manquinho, R. Martins,
and C. Le Goues, “Soar: a synthesis approach for data science api
refactoring,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 112–124.

[18] Z. Zhang, M. Pan, T. Zhang, X. Zhou, and X. Li, “Deep-diving
into documentation to develop improved java-to-swift api mapping,” in
Proceedings of the 28th International Conference on Program Compre-
hension, 2020, pp. 106–116.

[19] H. Alrubaye, M. W. Mkaouer, I. Khokhlov, L. Reznik, A. Ouni,
and J. Mcgoff, “Learning to recommend third-party library migration
opportunities at the api level,” Applied Soft Computing, vol. 90, p.
106140, 2020.

[20] M. Lamothe, W. Shang, and T.-H. P. Chen, “A3: Assisting android
api migrations using code examples,” IEEE Transactions on Software
Engineering, 2020.

[21] M. Fazzini, Q. Xin, and A. Orso, “Apimigrator: an api-usage migration
tool for android apps,” in Proceedings of the IEEE/ACM 7th Interna-
tional Conference on Mobile Software Engineering and Systems, 2020,
pp. 77–80.

[22] S. Xu, Z. Dong, and N. Meng, “Meditor: inference and application of
api migration edits,” in 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC). IEEE, 2019, pp. 335–346.

[23] M. Dilhara, A. Ketkar, N. Sannidhi, and D. Dig, “Discovering repetitive
code changes in python ml systems,” in International Conference on
Software Engineering (ICSE’22). To appear, 2022.

[24] M. Dilhara, A. Ketkar, and D. Dig, “Understanding software-2.0: A
study of machine learning library usage and evolution,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 30,
no. 4, pp. 1–42, 2021.

[25] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
msr studies,” in 2021 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR) (MSR). Los Alamitos, CA, USA:
IEEE Computer Society, may 2021, pp. 560–564. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00074

[26] J. W. Tukey et al., Exploratory data analysis. Reading, Mass., 1977,
vol. 2.

[27] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[28] H. He, R. He, H. Gu, and M. Zhou, “A large-scale empirical study on
java library migrations: prevalence, trends, and rationales,” in Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 478–490.

[29] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class library
migration,” ACM SIGPLAN Notices, vol. 40, no. 10, pp. 265–279, 2005.

[30] J. Henkel and A. Diwan, “Catchup! capturing and replaying refactorings
to support api evolution,” in Proceedings of the 27th international
conference on Software engineering, 2005, pp. 274–283.

[31] Z. Xing and E. Stroulia, “Api-evolution support with diff-catchup,” IEEE
Transactions on Software Engineering, vol. 33, no. 12, pp. 818–836,
2007.

[32] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1, 2010, pp. 325–334.

[33] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and recommen-
dation support for api evolution,” in 2009 IEEE 31st International
Conference on Software Engineering. IEEE, 2009, pp. 599–602.

[34] C. Zhu, R. K. Saha, M. R. Prasad, and S. Khurshid, “Restoring the
executability of jupyter notebooks by automatic upgrade of deprecated
apis,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2021, pp. 240–252.

[35] S. Alamir, P. Babkin, N. Navarro, and S. Shah, “Ai for automated
code updates,” in Proceedings of the 44th International Conference on
Software Engineering: Software Engineering in Practice, 2022, pp. 25–
26.

https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00074

	Introduction
	Constructing PyMigBench
	Step 1: Clone repositories
	Step 2: Identify candidate migration commits
	Step 3: Collect candidate migrations
	Step 4: Confirm library pairs
	Step 5: Confirm migrations
	Step 6: Collect migration-related code changes

	PyMigBench
	Uses of PyMigBench
	Threats to validity
	Related work
	Conclusion
	References

