
Understanding Test Deletion in Java Applications
Suraj Bhatta

North Dakota State University
Fargo, USA

suraj.bhatta@ndsu.edu

Frank Kendemah
North Dakota State University

Fargo, USA
frank.kendemah@ndsu.edu

Ajay Kumar Jha
North Dakota State University

Fargo, USA
ajay.jha.1@ndsu.edu

Abstract—Obsolete and redundant tests increase regression
testing costs. Therefore, developers should remove them from test
suites; however, identifying these tests is non-trivial. Automated
techniques for identifying obsolete and redundant tests could help
developers reduce regression testing costs. Nonetheless, we have
limited empirical evidence of how and why developers delete
tests. Therefore, in this work, we first create DELTEST, a dataset
of 24,431 manually confirmed deleted tests, by analyzing 449,592
commits from seven open-source Java projects. We then perform
an empirical study on DELTEST to understand test deletion. Our
findings show that test deletion frequency and the number of
deleted tests vary significantly across projects, suggesting that
test deletion is more likely driven by project-specific needs than
the broader development cycle. Developers delete only one or
two tests in most commits, suggesting test deletion is mostly
small and incremental. In DELTEST, 83.2% of tests are deleted
along with the corresponding test classes, while 16.8% are deleted
individually. We find that 91.4% of deleted tests in six projects are
obsolete tests (i.e., production code is deleted), 7% are redundant
tests (i.e., passing tests), and 1.6% are failing tests. The deletion
of 20% of redundant tests reduces code coverage or mutation
scores. We also evaluate test suite reduction (TSR) approaches
on DELTEST and find that a TSR approach identifies up to 54%
of the redundant tests. Our findings can help improve automated
techniques for identifying obsolete and redundant tests.

Index Terms—Test deletion, test suite evolution, test suite
reduction, test suite maintenance, regression testing

I. INTRODUCTION

Test suite evolution is a natural process for any active
software system. Changes in production code and developers’
desire to improve the structural coverage of software systems
are the main reasons for test suite evolution [1], [2], [3], [4].
Test suite evolution occurs through test addition, modification,
and deletion, where test deletion is the least frequently used
activity but occurs often [1]. Test deletion can play a critical
role in reducing test suite maintenance and execution costs
by removing tests that do not add value to test suites [5], [6],
[7], [8], [9]. Test deletion becomes more critical in continuous
integration (CI), where tests are executed frequently [10].

Existing tests may break due to changes in production code.
Developers may not be able to fix some of the broken tests,
resulting in obsolete tests that need to be removed [9]. It is
also possible that existing tests do not break, but add no value
to test suites. For example, developers may add a new test that
tests code behaviors including the behavior tested by an exist-
ing test, making the existing test redundant [11], [9]. Obsolete
and redundant tests increase regression testing costs without
any real benefits [5], [6], [7], [8], [9]. Therefore, developers
should identify and remove them from test suites. However,
identifying obsolete or redundant tests is non-trivial [9], [12].

Although we can identify tests with compilation errors as
obsolete tests, it is difficult to determine whether tests with
assertion failures or runtime exceptions are obsolete tests [13].
They could be related to bugs introduced during changes in
production code [14], [15], [7]. Identifying redundant tests is
even more challenging because they do not result in errors
or exceptions. Automated techniques to identify obsolete and
redundant tests could help developers reduce test maintenance
and execution costs. However, we have limited evidence of
(1) how many tests are deleted in a project and commit, (2)
how often they are deleted, (3) at what levels of granularity
(e.g., test method or class) they are deleted, and (4) the reasons
behind their deletion.

Pinto et al. investigated test suite evolution by analyzing
test suites from 88 versions (i.e., data points) of six Java
projects [1]. Although they mainly focused on test modifica-
tion/repair, they also investigated test deletion. However, their
study is limited to understanding reasons for test deletion.
Some production and test code co-evolution studies identified
types of changes in production code that resulted in test
deletion, providing reasons for tests becoming obsolete [3],
[16], [17]. Although the results of these studies are important
to understanding practitioners’ need for automated techniques,
the studies have three key limitations. First, they do not
perform an in-depth test deletion study. They perform limited
analysis on test deletion as part of a broader test suite evolution
study. Second, they do not analyze test deletion in each
commit, potentially missing a lot of test deletion activities.
Third, they mainly focus on why developers delete tests,
leaving other important questions about how developers delete
tests unanswered. No study systematically investigates both
how and why developers delete tests.

To address the gap, we study test deletion by analyzing
449,592 commits from seven open-source Java projects. We
first create a dataset of 24,431 manually confirmed deleted
tests, DELTEST. We then examine DELTEST to understand test
deletion by investigating four research questions: test deletion
frequency and interval (RQ1), the number of tests deleted in
projects and commits (RQ2), test deletion granularity (RQ3),
and reasons for test deletion (RQ4). Test suite reduction (TSR)
techniques aim to reduce test maintenance and execution costs
by identifying redundant tests and removing them from test
suites temporarily during regression testing [9], [8]. Therefore,
we design TSR experiments and evaluate TSR approaches on
DELTEST to assess their capability in identifying redundant
tests (RQ5). TSR approaches have never been evaluated on
developers’ deleted redundant tests.



Our findings indicate that test deletion is an infrequent soft-
ware development activity, accounting for only 0.47% of the
studied commits. Test deletion frequency varies significantly
across projects, ranging from only 14 deletions in jfreechart
over 15 years to 1,388 deletions in CTS over approximately
14 years. The number of deleted tests also varies substantially
across projects, ranging from 151 in jfreechart to 17,105 in
CTS. This suggests that test deletion is more likely driven by
project-specific needs than by the broader development cycle.
Developers delete 11 tests on average in a test deletion commit.
However, they delete only one or two tests in most commits,
suggesting test deletion is mostly small and incremental. De-
velopers delete 83.2% of the tests along with the corresponding
test classes, while 16.8% are deleted individually. We find that
91.4% of the tests across six projects are deleted due to the
deletion of the corresponding production code (i.e., obsolete),
62% of them are deleted in the same commit as the production
code, while 38% are deleted in separate commits. Additionally,
1.6% of the deleted tests are failed tests, but they are all
placeholder tests in a project. The remaining 7% of the deleted
tests are passing tests (i.e., redundant), and the deletion of
20% of them reduces code coverage or mutation scores. Also,
a TSR approach identifies 54% of the redundant tests.

To summarize, this study makes the following contributions:
• We create DELTEST, providing the first dataset of 24,431

manually confirmed deleted tests. The dataset provides the
necessary foundation for training, evaluating, and comparing
test deletion/reduction techniques.

• We conduct an empirical study on DELTEST to understand
test deletion. Our findings provide empirical evidence nec-
essary for building and improving test deletion techniques.

• We evaluate TSR approaches on DELTEST, assessing their
capability in identifying developers’ deleted redundant tests.
We discuss potential opportunities and limitations.
All our data and analysis scripts are available on our online

artifact page https://figshare.com/s/ee52fbf478ca15e1597b.

II. CREATING DELTEST

Figure 1 shows the process of creating DELTEST. We use
a combination of automated (white boxes) and manual (grey
boxes) steps. We select and clone seven open-source Java
projects (Step 1). We then iterate through the commits in these
projects to identify candidate commits that potentially contain
deleted tests (Step 2). Next, we analyze modified test files in
the candidate commits to identify candidate deleted tests (Step
3). After this, we identify and remove refactored tests from the
candidate deleted tests (Step 4). Finally, we manually confirm
deleted tests (Step 5).

A. Step 1: Project selection

We first select six open-source Java projects used in a
previous test deletion study [1]. These projects have also
been used in other test suite evolution studies [3], [18],
[19], [20], [16]. The projects are popular and actively main-
tained. Additionally, we select Android Compatibility Test

3,869 candidate commits
Identify candidate deleted tests
3

27,641 candidate deleted tests

Confirm deleted tests

5

32,871 candidate deleted tests

Filter refactored tests
4

6,138 candidate commits Identify candidate commits

2

 2,680 candidate commits

Select projects
1

 2,125 commits
24,431 deleted tests

449,592 commits
7 projects

Fig. 1: The process of creating DELTEST.

Suite (CTS)1, a free commercial-grade test suite for ensuring
the compatibility of the Android framework implementations
across original equipment manufacturer (OEM) partners and
platform releases. We select CTS because it has a large number
of tests and the Android platform is evolving rapidly2. Also,
although CTS is an open-source project, it is developed and
maintained internally by Google, providing a different context
than the other selected projects.

Overall, we select seven open-source Java projects and clone
their default branch. Table I shows the selected projects with
the total number of commits, which ranges from 1,771 in gson
to 401,732 in CTS. In total, we consider 449,592 commits
from seven projects.

B. Step 2: Identify candidate commits

We automatically analyze commits in the selected projects
to find candidate commits that potentially contain deleted
tests. We mark a commit as a candidate commit if all of the
following criteria are true. (1) In the default branch. We are
only interested in the commits that belong to the default/main
branch. (2) Not a merge commit. We ignore merge commits
as the changes in merge commits are already reflected in
the parent branches that we analyze. (3) Contains a modified
test file with a deleted method. We are only interested in the
commits in which developers delete a method from a test file.

We use PyDriller [21] to traverse commits in the cloned
projects and find commits that satisfy the above crite-
ria. We check the first and second criteria by specifying
only in branch to default branch and only no merge to true,
respectively. To check whether a commit contains a modified
test file with a deleted method, we first identify test files mod-
ified in the commit by checking if a filename has a Test prefix
or suffix, which is a common naming convention [22]. We
then compare methods available in the original and modified
versions of each test file in the commit using PyDriller. If
a method is available in the original version but not in the
modified version, we identify the test file as a file containing
a deleted method. The above criteria result in 6,138 candidate
commits from a total of 449,592 commits that we analyze.

1https://source.android.com/docs/compatibility/cts
2https://developer.android.com/tools/releases/platforms

https://figshare.com/s/ee52fbf478ca15e1597b


TABLE I: Projects used in our study.

Project
Studied Commits Total Test

Classes
Total
Tests

Initial Commit End Commit Duration Total Commits

commons-lang 750a21e 78b4f09 20 years, 5 months 7,080 200 3,867

gson 57d1f32 1a2170b 14 years, 3 months 1,771 124 1,310

commons-math 4a8cbc2 585b04c 19 years, 7 months 7,116 406 3,173

jfreechart 6f8f85d c77fcec 15 years, 1 month 4,219 353 2,276

joda-time b596f23 50b0897 19 years 2,252 151 4,240

pmd f213812 a653fb4 20 years, 6 months 25,422 747 1,577

cts f805710 a0d9ca6 13 years, 9 months 401,732 4,542 34,004

Total — — — 449,592 6,523 50,447

C. Step 3: Identify candidate deleted tests

We automatically analyze the candidate commits to identify
tests that developers may have deleted. For each test file
modified in the candidate commits, we parse the original and
modified versions of the file using Javalang3. We then extract
the methods present in the original version but not in the
modified version. If an extracted method has a test prefix in
the name or a @Test annotation, we consider the method as a
candidate deleted test. We use Javalang for this task, because
PyDriller cannot extract method annotation. However, we find
that Javalang could not successfully parse some of the test files
in the identified candidate commits. In such cases, we extract
a diff of the file and then use regular expressions on the diff
to identify candidate deleted tests. We find 32,871 candidate
deleted tests in 3,869 candidate commits.

D. Step 4: Filter refactored tests

Pinto et al. found during limited manual analysis that
many tests they identified as redundant and deleted were
not actually deleted, they were renamed or moved [1]. To
avoid this and reduce the overload of manual validation in
the next step, we analyze the candidate deleted tests using
RefactoringMiner [23] and filter out refactored tests. Refactor-
ingMiner identifies 5,230 of the 32,871 candidate deleted tests
as refactored tests. We filter out the identified refactored tests
resulting in 27,641 candidate deleted tests in 2,680 candidate
commits.

E. Step 5: Confirm deleted tests

We manually review the 27,641 candidate deleted tests in
2,680 candidate commits to confirm them. Two authors of this
paper individually review each candidate deleted test, diff code
in the commit containing the candidate deleted test, and the
commit message and discuss any disagreements. We measure

3https://github.com/c2nes/javalang

the agreement rate between the two authors using Cohen’s
Kappa [24]. We achieve 0.85 Cohen’s Kappa score, which is
almost perfect agreement. It took approximately one month
and 11 days to manually review the candidate deleted tests.

We find that 3,210 of the 27,641 candidate deleted tests
are refactored tests, which RefactoringMiner fails to identify.
The refactoring types in the 3,210 tests include inline method,
move and inline method, move and rename method, and
extract and move method [23]. We confirm 24,431 deleted
tests in 2,125 commits.

III. EMPIRICAL STUDY

We analyze the deleted tests and commits that contain the
deleted tests (i.e., test deletion commits) in DELTEST and
answer the following four research questions:
• RQ1: How often do developers delete tests? This question

investigates test deletion frequency and interval.
• RQ2: How many tests do developers delete in projects and

commits? This question investigates the number of tests
deleted in each project and commit.

• RQ3: At what levels of granularity do developers delete
tests? This question investigates whether developers delete
individual tests or whole test classes.

• RQ4: Why do developers delete tests? This question inves-
tigates reasons for test deletion.
We also evaluate TSR approaches on DELTEST, addressing

the following research question:
• RQ5: How many of the developers’ deleted redundant tests

do TSR approaches identify? This question investigates
whether TSR approaches can identify developers’ deleted
redundant tests.

A. RQ1: How often do developers delete tests?

1) Method: We first find test deletion commits in each stud-
ied project from DELTEST. We then categorize them by year



TABLE II: Test deletion commit (TDC) frequency and interval in the studied projects

Project #TDC Version with TDC
/Studied version

#TDC per
version

Years with TDC
/Total years

#TDC per
year

Interval in
#commits

Interval in
#days

Mean Med. Mean Med. Mean Med. Mean Med.

commons-lang 108 (1.53%) 16/21 (76%) 7 4 19/21 (90%) 6 4 56 32 61 23

gson 37 (2.09%) 10/19 (53%) 4 4 9/15 (60%) 4 3 47 21 139 29

commons-math 231 (3.25%) 13/14 (93%) 18 10 19/20 (95%) 12 10 32 11 31 5

jfreechart 14 (0.33%) 1/2 (50%) 8 8 4/16 (25%) 4 3 60 4 135 1

joda-time 31 (1.38%) 6/22 (27%) 5 2 9/20 (45%) 3 1 69 13 165 4

pmd 316 (1.24%) 40/64 (63%) 8 4 20/21 (95%) 16 12 83 35 23 4

cts 1,388 (0.35%) 21/21 (100%) 65 45 14/14 (100%) 99 91 291 122 3 1

All 2,125 (0.47%) 107/163 (66%) 20 5 94/127 (74%) 21 6 211 68 17 1

and project release version to understand any year/version-
wise test deletion trends. We use timestamps in the commits
to categorize them by year. To categorize them by release
version, we select all major and minor release versions (MA-
JOR.MINOR) available in the GitHub repositories of the
projects. We consider commits belonging to version Vn if
their timestamps fall after version Vn−1 and before version Vn

release dates. Some recent commits may not have a release
version yet. We exclude such commits from categorization.
For CTS, we select all the official release versions4. To get
more insights into test deletion patterns, we also calculate the
interval between consecutive test deletion commits in the time
interval in days and the number of commits without deleted
tests. We analyze commit histories and timestamps in the test
deletion commits to extract these data. We consider the time
interval to be 0 days if the interval between consecutive test
deletion commits is less than 24 hours.

2) Findings: Table II shows the results. The number of
test deletion commits in the studied projects ranges from 14
in jfreechart to 1,388 in CTS, which means developers delete
tests 14 and 1,388 times in jfreechart and CTS, respectively,
throughout the projects’ lifetime. Joda-time and gson have
only 31 and 37 test deletion commits, respectively. Although
commons-math and pmd have more test deletion commits than
the other non-CTS projects, the numbers are not anywhere near
the number of test deletion commits in CTS. We find a total
of 2,125 test deletion commits in the studied projects, 65% of
them are only in CTS. However, the percentage of test deletion
commits in CTS (0.35%) is less than in five other projects.
Only 0.47% of the studied commits across the projects are
test deletion commits.

4https://source.android.com/docs/compatibility/cts/downloads

We find a total of 163 versions in the studied projects,
among which 107 (66%) versions contain test deletion com-
mits. Only CTS has test deletion commits in all the studied
versions. Test deletion commits in each test-deleted version
on average range from four in gson to 65 in CTS. The mean
and median values for test deletion commits in each test-
deleted version across the projects are 20 and 5, respectively.
We also find that developers delete tests every year only in
CTS. In the other projects, developers do not delete tests for
one or two years in commons-lang, commons-math, and pmd,
whereas they do not delete tests for six to 12 years in the
remaining projects. Test deletion commits in each test-deleted
year on average range from three in joda-time to 99 in CTS.
The mean and median test deletion commits in each test-
deleted year across the projects are 21 and 6, respectively. The
graphs in Table II show the number of test deletion commits in
each test-deleted version and year. The graphs do not indicate
any clear year/version-wise trend in test deletion across the
projects. However, test deletion occurs more frequently (i.e.,
significantly higher than the average) in a few of the test-
deleted versions and years in the non-CTS projects. We also
find that test deletion frequency in CTS has significantly
increased in recent versions and years.

The number of commits between consecutive test deletion
commits across the projects on average is 211, ranging from
32 in commons-math to 291 in CTS. The average number
of days between consecutive test deletion commits across the
projects is 17, ranging from 3 in CTS to 165 in joda-time.
However, the interval data is highly skewed as indicated by
the median values.

3) Discussion: Test deletion is an infrequent software de-
velopment activity across projects, accounting for only 0.47%
of the commits. However, test deletion frequency varies quite



a lot in the projects. Developers are generally reluctant to
remove tests [25]. We observe this to be true for non-CTS
projects, where developers often go several years without
deleting tests. Most of the test deletion commits in DELTEST
are from CTS, but CTS has a lower percentage of test deletion
commits compared to the five other projects, suggesting that
the rapid evolution of an application plays a critical role in test
deletion frequency. Although CTS is an open-source project,
it is developed and maintained internally by Google, and the
Android platform is evolving rapidly. Future studies could
further investigate how these factors influence test deletion.

The results do not show a clear version or year-wise test
deletion trend across the projects, implying that test deletions
are more likely driven by project-specific needs, such as the
pace of project evolution, rather than by a broader development
or release cycle.

RQ1: Test deletion is an infrequent software development
activity, accounting for only 0.47% of the studied commits.
Test deletion frequency varies significantly across projects,
suggesting that it is more likey driven by project-specific
needs than by a broader development cycle.

B. RQ2: How many tests do developers delete in projects and
commits?

1) Method: We first find the number of tests developers
delete in each project and test deletion commit from DELTEST.
We then calculate the mean, median, and maximum number
of tests deleted in a test deletion commit for each project. We
also calculate the percentage of tests deleted in a test deletion
commit. We get the original test suite size for a test deletion
commit by identifying the total number of tests present in the
direct parent commit of the test deletion commit. We then
calculate the mean, median, and maximum percentage of tests
deleted in a test deletion commit for each project.

2) Findings: Figure 2 shows the number of deleted tests
in the projects. It ranges from 151 in jfreechart to 17,105 in
CTS. Gson, joda-time, commons-lang, pmd, and commons-
math have 260, 660, 869, 2,070, and 3,316 deleted tests,
respectively. Developers delete these tests over 13 to 20 years
(Table I). In total, we find 24,431 deleted tests in the projects,
with CTS accounting for 70% of the tests.

Figure 3 shows the number of tests deleted in a test deletion
commit. We have chopped the violin plots from the right to
clearly display the mean (*) and median (.) values. Therefore,
the violin plots may not represent actual maximum values.
Developers delete 11 tests on average in a test deletion commit
across the projects, ranging from 6 in pmd to 21 in joda-time.
They delete only one or two tests in most of the commits as
indicated by the median values. The percentage of tests deleted
in a test deletion commit on average ranges from 0.1% in CTS
to 3.4% in joda-time. However, only 1% of the tests developers
delete on average in most test deletion commits as indicated
by the median percentage values.

gson (260)

commons−math (3,316)

commons−lang (869)
joda−time (660)

pmd (2,070)

jfreechart (151)

cts (17,105)

Fig. 2: Tests deleted in the studied projects

*
*

*
*

*
*

*

commons−lang
commons−math

cts
gson

jfreechart
joda−time

pmd

0 5 10 15 20 25

Number of tests deleted

*
*

*
*

*
*

*

commons−lang
commons−math

cts
gson

jfreechart
joda−time

pmd

0 1 2 3 4

Percentage of tests deleted

Fig. 3: Tests deleted in a test deletion commit

Developers also delete a large number of tests in a single
commit reaching up to 499 (13%) in commons-math and 3,100
(18%) in CTS. Note that a test deletion commit with the
maximum number of deleted tests may not have the maximum
percentage of deleted tests in a project, which is the case in
commons-math. It has a different test deletion commit where
developers delete all the available 337 tests, reducing test suite
size by 100%.

3) Discussion: The number of deleted tests varies signifi-
cantly across projects, despite some projects having a similar
total number of tests. For example, gson and pmd have 1,310
and 1,577 total tests, respectively, but 260 and 2,070 deleted
tests. This again suggests that test deletion is a project-specific
activity. However, the total commits in pmd is 14 times that
in gson (Table I). Also, most of the deleted tests (70%) in
DELTEST are from CTS, although it has the least development
duration (13 years). This suggests that the pace of application
evolution plays a critical role in the number of deleted tests in a
project. We found a statistically significant positive correlation
between the number of total commits and the number of
deleted tests in a project (Spearman’s correlation coefficient
0.93 and p-value 0.003), while no significant correlation
(coefficient 0.04 and p-value 0.938) between the development
duration and the number of deleted tests.



Deleted tests in gson are notably fewer than 400 deleted
tests Pinto et al. reported in their study [1], which analyzed
the project only until December 2011. We believe the main
reason for this difference is their test deletion data includes
tests that are renamed and moved but not actually deleted. We
addressed this by filtering out refactored tests.

The median number and percentage of tests deleted in a
commit across the projects are low, suggesting that most test
deletions are small and incremental.

RQ2: The number of deleted tests vary significantly across
projects, which is significantly correlated with the pace of
application evolution. Only one or two tests are deleted in
most commits, suggesting most test deletions are small and
incremental.

C. RQ3: At what levels of granularity do developers delete
tests?

1) Method: We analyze the deleted tests in DELTEST at
two different granularity levels: individual test and test class.
If developers delete a test along with its test class in a test
deletion commit, we identify that test deletion occurs at the
test class level. Otherwise, if developers delete a test without
deleting its test class, we identify that test deletion occurs at
the individual test level.

2) Findings: Table III shows the results. Developers delete
20,336 (83.2%) tests along with the corresponding test classes
across the projects. These tests belong to 3,458 test classes
that developers delete in 746 (35.1%) test deletion commits.
Except for joda-time, developers delete the majority of tests
(74.8%-86.9%) along with test classes. Only 4,095 (16.8%)
tests developers delete individually across the projects. How-
ever, these deleted tests are spread across 1,464 (68.9%) test
deletion commits. Note that test deletion can occur at both
individual test and test class levels in a test deletion commit.
That is why the sum of test deletion commits in columns third
and fourth is not equal to the total test deletion commits (i.e.,
2,125) in DELTEST.

3) Discussion: The results show that most tests become
obsolete or redundant at the class level. Although only 16.8%
of the tests are deleted individually, they are spread across
most test deletion commits. This is the key reason we found
11 tests deleted on average in a test deletion commit and only
one or two tests deleted in most commits in RQ2.

RQ3: Developers delete 83.2% tests along with test classes
and the remaining 16.8% tests individually. The tests deleted
along with test classes and individually are spread across
35.1% and 68.9% test deletion commits, respectively.

D. RQ4: Why do developers delete tests?

1) Method: We employ a mixed-method approach, com-
bining static analysis of code changes with dynamic test
execution, to identify reasons for test deletion.

TABLE III: Test deletion granularity

Project #Tests
with class

#Test class
(#TDC)

#Tests without
class (#TDC)

commons-lang 688 (79.2%) 70 (38) 181 (71)

gson 226 (86.9%) 43 (23) 34 (17)

commons-math 2,738 (82.6%) 339 (105) 578 (133)

jfreechart 122 (80.8%) 21 (9) 29 (7)

joda-time 291 (44.1%) 20 (7) 369 (26)

pmd 1,548 (74.8%) 512 (137) 522 (193)

cts 14,723 (86.1%) 2,453 (427) 2,382 (1,017)

Total 20,336 (83.2%) 3,458 (746) 4,095 (1,464)

Developers could delete a test because they remove the
corresponding production code. Therefore, we begin by an-
alyzing how many tests developers delete due to the removal
of production code and identify them as obsolete tests. We first
use a static analysis approach to avoid running tests on many
commits. We analyze production and test code changes in each
test deletion commit in DELTEST. Specifically, we identify all
the production methods deleted in a test deletion commit by
comparing methods in the previous and current versions of
each modified file. We then consider a deleted test in the
commit obsolete if any of the deleted production methods
are invoked in the deleted test. The above scenario considers
production and test methods deleted in the same commit.
However, developers could delete them in separate commits.
Therefore, we check whether invoked production methods in a
deleted test are still declared in the corresponding production
classes. If any of them are not declared, we consider the test
obsolete. We categorize obsolete tests as obsolete-parallel and
obsolete-phased if developers remove the production code in
the test deletion commit and earlier commits, respectively. For
obsolete-phased tests, we also calculate the interval between
the test deletion commits and the corresponding production
code deletion commits in days.

We next run the remaining deleted tests. For this, we check
out the immediate parent commit of each test deletion commit
and run the tests. We then categorize the deleted tests into
the following three categories. (1) Obsolete if a test has a
compilation error. We categorize such tests as obsolete-phased
because we run them in the parent of a test deletion commit.
(2) Failed if a test fails due to an assertion failure or runtime
exception. (3) Redundant if a test passes. We categorize
redundant tests into confirmed redundant if they do not reduce
code coverage or mutation score and potential redundant if
they reduce coverage or mutation score. We measure code
coverage and mutation score loss using JaCoCo5 and PIT6,
respectively. To compute the losses, we first check out the

5https://github.com/jacoco/jacoco
6https://pitest.org/



commons−math

pmd

commons−lang

joda−time

gson

jfreechart Obsolete Tests
Failed Tests
Redundant Tests

Number of deleted tests
0 500 1000 1500 2000 2500 3000

Fig. 4: Reasons for test deletions
TABLE IV: Number of redundant tests (RT) that reduce branch
coverage (BC), line coverage (LC), and mutation score (MS)

Project RT BC reducing
tests

LC reducing
tests

MS reducing
tests (Total)

commons-lang 4 2 2 2 (3)

commons-math 16 0 0 0 (14)

joda-time 23 0 0 0 (3)

pmd 475 86 101 64 (349)

Total 518 88 103 66 (369)

immediate parent commit of each test deletion commit. We
then measure branch coverage, line coverage, and mutation
score with and without each redundant test. We calculate
the code coverage and mutation score loss (i.e., percentage
difference) at the class level. We do not investigate reasons
for test deletion in CTS, because it only contains test code.

2) Findings: Figure 4 shows the reasons for test deletions
in the non-CTS projects. We find that 6,694 (91.4%) of the
7,326 deleted tests are obsolete. All the deleted tests in gson
and jfreechart are obsolete, while 99% of the deleted tests
in commons-lang and commons-math are obsolete. Among
6,694 obsolete tests, 4,164 (62%) are obsolete-parallel and
2,530 (38%) are obsolete-phased. The median interval between
production code deletion and the corresponding obsolete-
phased test deletion is 1 day, but an obsolete-phased test
remains in the codebase for up to 31 days. Recall that we found
many tests deleted in some commits in RQ2. We analyze the
test deletion commit with the maximum number of deleted
tests from each non-CTS project and find that they are all
obsolete tests. Developers delete them because the production
code is deprecated, rolled back to a previous version, or ported
to a more specific project/library.

We find 518 (7%) redundant tests across 111 commits in
four projects, 415 (80%) are confirmed redundant and 103
(20%) are potential redundant. Table IV shows the number of
deleted redundant tests that reduce line and branch coverage
and mutation score. We find that 88 redundant tests reduce
both branch and line coverage. Additionally, 15 redundant
tests reduce only line coverage. Overall, 103 redundant tests
reduce line or branch coverage, and 101 of them are only in
pmd. Since we measure coverage in the parent commits of
the test deletion commits, we manually check whether any
new tests are added in the test deletion commits making these

Branch Coverage

Line Coverage

Mutation Score

0 10 20 30
Loss in %

Fig. 5: Coverage and mutation score loss by redundant tests.

Fig. 6: An assertion failure test from joda-time in 0e07ac6.

103 tests redundant. We do not find any new tests added
in the commits. We could not successfully run PIT on the
commits containing 149 redundant tests due to configuration
issues. Previous studies have also found similar issues with
PIT [26], [27]. Table IV shows the results for the remaining
369 redundant tests. We find that 66 redundant tests reduce
mutation scores, and 64 of them are only in pmd. These 66
tests also reduce both line and branch coverage. Figure 5
shows the line coverage, branch coverage, and mutation score
loss due to the removal of the 88, 103, and 66 redundant tests,
respectively. The median branch and line coverage loss are 7%
and 5%, respectively. However, the removal of a redundant test
resulted in up to 25% and 34% branch and line coverage loss,
respectively. We also find that the median mutation score loss
is 12%, but reaches up to 26%.

We find that 114 (1.6%) deleted tests are failed tests. All of
them are in four test deletion commits in joda-time and failed
due to assertion failures. Upon manual inspection, we find that
the tests were added in two commits, one with 107 tests and
the other with 7 tests. The tests have no meaningful logic and
the failures are intentional. Developers remove 112 of these
tests within four days, while one test gets removed after 247
days and another after 276 days. Figure 6 shows an example
test from joda-time.

3) Discussion: Most tests (91.4%) are deleted because their
production code is deleted, which is expected as tests become
obsolete when the code they test no longer exists. However, the
percentage is significantly higher than the 58% found by Pinto
et al. in the same projects [1]. Pinto et al. first automatically
identified obsolete, hard-to-fix (i.e., failed), and redundant tests
and then manually analyzed a few of them. They found that
most of the analyzed redundant tests are refactored tests and
hard-to-fix tests are obsolete tests. We believe this is why
they identified a significantly lower obsolete test percentage
than actually exists. Our findings show that a significant
percentage (38%) of obsolete tests are not deleted along with



their production code in the same commit. There could be
several reasons for this, such as lack of time to run all tests
and unawareness of the existence of the tests [28], [29].

The results show that the deleted failed tests are from only
one project and all of them are intentional. This suggests the
developers may have followed a test-driven development ap-
proach [30]. However, if such tests are not promptly followed
by feature implementation and updates to the test suite, they
become test smells [31], [32]. We do not observe this practice
in the other projects.

Although redundant tests are challenging to identify, the
results show that developers do identify and delete them.
However, 92% of the deleted redundant tests are from only
one project. This indicates that it is not a widely adopted
practice across projects. However, it is also possible that the
other projects do not have redundant tests. The results also
show that 20% of the redundant tests reduce code coverage or
mutation score. One potential reason for deleting these tests
is because they are flaky [33]. We ran each of these tests
three times and did not find any flaky tests. It is possible
that developers do not focus on code coverage and mutation
scores while removing redundant tests. This can be verified
only through a user study.

RQ4: 91.4% of the deleted tests are obsolete, among these
62% are obsolete-parallel and 38% are obsolete-phased. 7%
of the deleted tests are redundant and 20% of them reduce
code coverage or mutation score. Only 1.6% of the deleted
tests are failed tests and all of them are intentionally failed.

E. RQ5: How many of the developers’ deleted redundant tests
do TSR approaches identify?

1) Method: We select FAST-R [34] to assess the capability
of TSR approaches in identifying redundant tests. FAST-R
contains four different TSR approaches: FAST++, FAST-CS,
FAST-pw, and FAST-all. They are scalable similarity-based
approaches. They reduce test suites at the test class level,
which covers the majority of the redundant tests identified
in RQ4. DELTEST has 426 (82%) redundant tests removed
along with 72 test classes in 49 commits from three projects.
We pass two inputs to the FAST-R approaches: (1) the original
test suite and (2) a test budget (i.e., the reduced test suite size
needed in %). We consider the test suite in the direct parent
commit of a test deletion commit as the original test suite,
resulting in 49 original test suites shown in Table V.

We consider two budget scenarios for each original test
suite: strict and loose. In the strict scenario, we calculate the
budget as the percentage of test classes kept in the corre-
sponding test deletion commit. For example, if a developer
deletes two test classes in a commit and its parent commit has
10 test classes, the budget is 80%. In the loose scenario, we
calculate the budget as the minimum of all strict budgets in a
project. Therefore, all original test suites in a project have the
same loose budget. For example, as shown in Table V, strict
budgets for 46 original test suites in pmd range from 95.45%

TABLE V: Dataset used to evaluate FAST-R approaches

Project #Original
test suites

#Deleted test
classes/tests Budget

commons-math 1 1/9 99.81%
joda-time 2 2/21 99.07%-99.32%
pmd 46 69/396 95.45%-99.88%

49 72/426

all

pmd

joda−time

commons−math

FAST−CS

0 20 40

Loose
Strict

FAST++

0 20 40 60 80 100

(a) % of the deleted test classes excluded in the reduced test suites

all

pmd

joda−time

commons−math

FAST−CS

0 20 40 60 80

Loose
Strict

FAST−all

0 20 40

(b) % of the redundant tests excluded in the reduced test suites

Fig. 7: FAST-R evaluation results

to 99.88%, therefore, the loose budget for pmd is 95.45%.
The strict and loose scenarios represent the budget at the
commit and project levels. Overall, we generate eight reduced
test suites (i.e., four approaches in two budget scenarios) for
each original test suite. Since the FAST-R approaches are non-
deterministic, we run each approach in each budget scenario
on each original test suite 50 times as evaluated originally
and select the optimally reduced instance, the instance that
excludes the maximum number of redundant test classes.

2) Findings: Figure 7 shows the results. Due to the space
limitation, we show the results of only two best-performing
FAST-R approaches in strict and loose scenarios. The results
of the other two approaches in both scenarios are available in
our artifacts. Figure 7a shows the percentage of the developers’
deleted test classes excluded in the reduced test suites in loose
and strict budgets. None of the FAST-R approaches identify
the developer’s deleted test class in commons-math in both
loose and strict budgets. FAST-CS and FAST++ show better
performance in both joda-time and pmd. In the strict budgets,
FAST-CS performs the best, excluding 50% and 13% of the
test classes in joda-time and pmd, respectively. Whereas, in
the loose budgets, FAST++ performs the best, excluding 100%
and 59% of the test classes in joda-time and pmd, respectively.

Figure 7b shows the percentage of the developers’ deleted
redundant tests excluded in loose and strict budgets. Since the
FAST-R approaches do not exclude the developer’s deleted



test class in commons-math, they also do not exclude any
redundant tests from the test class. We do not find any
one approach performing better in excluding the redundant
tests across the projects in strict and loose scenarios. In the
strict scenario, FAST-CS and FAST-pw perform the best by
excluding 8% and 52% of the redundant tests in pmd and joda-
time, respectively. In the loose scenario, FAST++ and FAST-all
perform the best by excluding 100% and 59% of the redundant
tests in joda-time and pmd, respectively. Overall, across the
projects and budget scenarios, FAST-CS performs the best
in the loose scenario by identifying 43% of the redundant
tests. Although FAST-all does not identify any redundant
tests in commons-math and joda-time in the loose scenario,
it identifies 54% of the total redundant tests because most
redundant tests are present only in pmd.

3) Discussion: Although the FAST-R approaches show
some potential by identifying up to 54% of the redundant tests,
they do not perform consistently at the individual project level.
The results also show that the performance of the FAST-R
approaches improves significantly when the budget is reduced
(i.e., in the loose scenario). We even ran FAST-R with the
lowest budget across the projects (95.45%) and found that
three of the FAST-R approaches identify the redundant tests in
commons-math as well. While a large reduction in the budget
may work during regression testing for removing redundant
tests temporarily, it may not be suitable for identifying redun-
dant tests for permanent test deletion due to many potential
false positives.

RQ5: Not a single FAST-R approach performs consistently
across the projects. FAST++ performs better in joda-time
by identifying 100% of the redundant tests, while FAST-all
performs better in pmd by identifying 59% of the redundant
tests.

IV. IMPLICATIONS

A. Identify obsolete tests

The majority (91%) of the developers’ deleted tests are
obsolete tests. Although these tests can be identified through
compilation errors, we found that 38% of them are not deleted
along with their production code. This may increase test
maintenance costs [35]. Automated just-in-time techniques
that identify obsolete tests and notify developers to delete them
along with the production code can help developers maintain
clean test suites and facilitate production and test code co-
evolution. The fact that most (83%) test deletions occur at
the test class level may help improve the efficiency of these
techniques.

B. Identify redundant tests

FAST-R approaches have limited accuracy in identifying
developers’ deleted redundant tests across projects. However,
they are scalable and have a high recall under a reasonable
budget (95.45%). Therefore, the approaches can be used as a
filtering step to identify candidate redundant tests. We found
that most (80%) of the developers’ deleted redundant tests

do not reduce code coverage or mutation scores. Therefore,
to identify redundant tests for permanent test deletion, TSR
approaches or new techniques can further analyze the can-
didate redundant tests for code coverage and mutation score
loss. Note that calculating and maintaining code coverage
and mutation score is expensive [10], [36], [37]. Therefore,
performing these tasks on a limited number of candidate
redundant tests can improve the performance of the techniques.

C. Build, evaluate, and compare test deletion techniques

We contributed DELTEST, the first manually confirmed
dataset of developers’ deleted obsolete and redundant tests.
Machine learning techniques for predicting obsolete and re-
dundant tests can use this dataset for training [35], [13]. Test
deletion techniques can also use the dataset as ground truth to
evaluate their effectiveness in identifying obsolete and redun-
dant tests. Moreover, the dataset can facilitate comparisons of
the effectiveness of test deletion techniques.

D. Mine developers’ deleted tests

Identifying refactored tests is crucial in mining developers’
deleted tests. If we do not filter out all the refactored tests,
the results will have too many false positives, as found in
a previous study [1] and validated by our results. We used
RefactoringMiner [23], a state-of-the-art tool for detecting test
refactorings. We manually reviewed 200 of the 5,230 test
refactorings detected in Section II-D and found that Refactor-
ingMiner correctly identified all of them as test refactorings.
However, we found during our manual analysis in Section II-E
that RefactoringMiner failed to identify 3,210 test refactorings,
which is a significant number. Other studies have also found
the limitation of RefactoringMiner in identifying test refac-
torings [38]. Researchers can use our dataset to identify and
address the limitations of test refactoring detection techniques,
which can help test deletion and refactoring studies.

V. THREATS TO VALIDITY

A. Construct validity:

Developers can partially delete a test by deleting its state-
ments [39], [40], [41]. In this study, we did not consider test
deletion at the statement level. However, most of the existing
test evolution and TSR techniques can use our dataset and
empirical results, because they analyze tests at the individual
test or class level.

B. Internal validity

We performed several automated steps to create DELTEST.
In the process, we may have missed some deleted tests. To
mitigate the threat, we manually validated some of the results
after each automated step, ensuring tools and techniques
used in the step do not have any flaws. For example, we
manually validated 200 of the 5,230 refactored tests identified
by RefactoringMiner and found the results were correct. We
manually reviewed code changes and commit messages to
confirm the deleted tests. However, we found that sometimes
test deletion is not obvious from the code changes or commit



messages. To mitigate this threat, two authors independently
reviewed each candidate deleted test.

C. External validity

DELTEST, on which the empirical results are based, has
deleted tests from only seven open-source Java projects. How-
ever, six of the projects are commonly used in test suite
evolution [3], [18], [19], [20], [16] and TSR [34] studies.
The remaining one is an open-source large-scale test suite
developed and maintained internally by Google, which pro-
vides diversity to DELTEST in terms of types of projects.
We selected FAST-R approaches [34] as representative TSR
approaches to assess the capability of identifying developers’
deleted redundant tests, mainly because they are scalable
approaches that do not require any information (e.g., code
coverage and mutation) about tests.

VI. RELATED WORK

Two categories of work are particularly related to our study,
test suite evolution and test suite reduction, which we discuss
in this section.

A. Test suite evolution

Several studies have investigated the co-evolution of pro-
duction and test code. Zaidman et al. analyzed added and
changed production and test code to understand their co-
evolution nature (i.e., synchronous or phased), developers’
testing strategies, testing effort, and test quality (i.e., cov-
erage) [42], [2]. Marinescu et al. examined how programs
evolve in terms of code, test, and coverage, including the co-
evolution of production and test code [43]. Although these
studies analyze code changes, they do not delve into test
deletion. Lubson et al. investigated whether association rule
mining can be used to find evidence and extent of production
and test code co-evolution [44]. Marsavina et al. later used
association rule mining to examine how test code evolves
with different types of changes in production code [3]. They
identified six co-evolution patterns, including the deletion
of test methods and classes when corresponding production
methods and classes are deleted or modified. Shimmit et
al. performed a literature search and analyzed open-source
repositories to identify co-evolution patterns [16]. They also
proposed test addition and modification remedies for the iden-
tified production code change patterns. Levin et al. investigated
how production code maintenance activities (i.e., corrective,
perfective, and adaptive) and semantic code changes (e.g.,
removal of a class or method) co-relate with test maintenance
activities and test counts [17]. They found that the removal of
a production class, method, or statement increases the odds of
test deletion. Co-evolution studies make various assumptions
while identifying co-evolution commits. Sun et al. found that
these assumptions introduce noises in co-evolution datasets,
resulting in inaccurate results [45]. They also proposed an
approach to identify co-evolution artifacts.

While some of these co-evolution studies provide evidence
of test deletion and its reason (i.e., production code removal),

they focus only on obsolete tests and do not report how
many and how often developers delete tests. Only Pinto et al.
reported this in their test suite evolution study and specifically
investigated the reasons for test deletion, although their main
focus was test modification/repair [1]. In contrast to Pinto et
al.’s test deletion study, our study is more comprehensive in
terms of (1) subjects: our study additionally includes a large-
scale privately developed and managed test suite, (2) data
points: we investigate 449,592 commits in comparison to 88
versions investigated by Pinto et al., and (3) datasets: our
results are based on 24,431 manually confirmed deleted tests
in comparison to 2,541 unconfirmed deleted tests identified
and investigated by Pinto et al. We additionally investigate
test deletion granularity and test suite size reduction.

B. Test suite reduction

Several TSR approaches have been proposed in the last three
decades [46], [47], [48]. They mainly use greedy [9], [49],
clustering [34], search-based [50], or hybrid [51] algorithms
that rely on test code similarity [34], code coverage [9], [52],
or fault coverage [52], [53] to identify redundant tests and
remove them from test suites. In this work, we do not propose
a new TSR approach. Instead, we evaluate existing TSR
approaches to assess their capabilities in identifying redundant
tests for permanent test deletion.

Khan et al. performed a literature review to understand the
quality of experiments in TSR studies [48]. They made several
recommendations to improve TSR experiments. We also aim
to improve TSR experiments through this work. However,
we focus on permanent test deletion and provide a dataset
and empirical evidence to improve TSR experiments. Previous
TSR studies mainly use test suite size reduction (higher is
better) and fault detection capability loss (lower is better)
properties of the reduced test suites to assess the effectiveness
of TSR approaches [54], [55], [56]. In contrast, we evaluate the
effectiveness of FAST-R approaches by checking how many
of the developers deleted redundant tests these approaches
identify and remove them from test suites. This evaluation
criteria is critical to using TSR approaches for permanent
test deletion. TSR approaches have never been evaluated on
developers’ deleted redundant tests.

Several empirical studies have been performed to compare
different TSR approaches [57], [58], [59], [60]. We also
evaluate four different clustering-based TSR approaches from
FAST-R. However, our main goal in this work is to assess the
capabilities of TSR approaches in identifying redundant tests
for permanent test deletion.

VII. CONCLUSION

We conducted an empirical study to understand how and
why developers delete tests. To do this, we analyzed 449,592
commits from seven open-source Java projects and created
DELTEST, a dataset containing 24,431 manually confirmed
deleted tests. We found that test deletion is an infrequent
software development activity. Both the frequency and number
of deleted tests vary significantly across projects, suggesting



that test deletion is more likely driven by project-specific
needs, such as the pace of code evolution, rather than a broader
development cycle. Most tests were deleted because they
were obsolete, although we also found failed and redundant
tests removed in certain projects. However, these were mostly
limited to a single project, and FAST-R approaches have the
potential to identify redundant tests.

REFERENCES

[1] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
2012, pp. 1–11.

[2] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in 2008 1st international conference on software testing,
verification, and validation. IEEE, 2008, pp. 220–229.

[3] C. Marsavina, D. Romano, and A. Zaidman, “Studying fine-grained
co-evolution patterns of production and test code,” in 2014 IEEE
14th International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2014, pp. 195–204.

[4] D. J. Kim, N. Tsantalis, T.-H. P. Chen, and J. Yang, “Studying test anno-
tation maintenance in the wild,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 62–73.

[5] T. Xie, D. Notkin, and D. Marinov, “Rostra: A framework for detecting
redundant object-oriented unit tests,” in Proceedings. 19th International
Conference on Automated Software Engineering, 2004. IEEE, 2004,
pp. 196–205.

[6] H. K. Leung and L. White, “Insights into regression testing (software
testing),” in Proceedings. Conference on Software Maintenance-1989.
IEEE, 1989, pp. 60–69.

[7] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the
cost of regression testing in practice: A study of java projects using
continuous integration,” in Proceedings of the 2017 11th joint meeting
on foundations of software engineering, 2017, pp. 821–830.

[8] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and X. Qiu,
“On test suite composition and cost-effective regression testing,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 13, no. 3, pp. 277–331, 2004.

[9] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for control-
ling the size of a test suite,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 2, no. 3, pp. 270–285, 1993.

[10] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siem-
borski, and J. Micco, “Taming google-scale continuous testing,” in 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017,
pp. 233–242.

[11] A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagppan,
“Fastlane: Test minimization for rapidly deployed large-scale online
services,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 408–418.

[12] R. Greca, B. Miranda, and A. Bertolino, “State of practical applicability
of regression testing research: A live systematic literature review,” ACM
Computing Surveys, vol. 55, no. 13s, pp. 1–36, 2023.

[13] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang, “Is this a bug
or an obsolete test?” in European Conference on Object-Oriented
Programming. Springer, 2013, pp. 602–628.

[14] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” in 2015 IEEE international conference on software
maintenance and evolution (ICSME). IEEE, 2015, pp. 101–110.

[15] M. Skoglund and P. Runeson, “A case study on regression test suite
maintenance in system evolution,” in 20th IEEE International Confer-
ence on Software Maintenance, 2004. Proceedings. IEEE, 2004, pp.
438–442.

[16] S. Shimmi and M. Rahimi, “Patterns of code-to-test co-evolution for au-
tomated test suite maintenance,” in 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST), 2022, pp. 116–127.

[17] S. Levin and A. Yehudai, “The co-evolution of test maintenance and
code maintenance through the lens of fine-grained semantic changes,”
in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2017, pp. 35–46.

[18] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Automatic test case evolu-
tion,” Software Testing, Verification and Reliability, vol. 24, no. 5, pp.
386–411, 2014.

[19] A. R. Chen, T.-H. P. Chen, and S. Wang, “T-evos: A large-scale
longitudinal study on ci test execution and failure,” IEEE Transactions
on Software Engineering, 2022.

[20] L. Vidács and M. Pinzger, “Co-evolution analysis of production and
test code by learning association rules of changes,” in 2018 IEEE Work-
shop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE). IEEE, 2018, pp. 31–36.

[21] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint meeting on european software engineering conference and
symposium on the foundations of software engineering, 2018, pp. 908–
911.

[22] B. Van Rompaey and S. Demeyer, “Establishing traceability links
between unit test cases and units under test,” in 2009 13th European
Conference on Software Maintenance and Reengineering. IEEE, 2009,
pp. 209–218.

[23] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, vol. 48, no. 3, pp. 930–950, 2020.

[24] J. Cohen, “A coefficient of agreement for nominal scales,” in
Educational and Psychological Measurement, vol. 20, 1960, pp. 37–46.
[Online]. Available: https://api.semanticscholar.org/CorpusID:15926286

[25] A. Najafi, W. Shang, and P. C. Rigby, “Improving test effectiveness
using test executions history: An industrial experience report,” in 2019
IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 213–
222.

[26] M. Ojdanic, E. Soremekun, R. Degiovanni, M. Papadakis, and
Y. Le Traon, “Mutation testing in evolving systems: Studying the rele-
vance of mutants to code evolution,” ACM Trans. Softw. Eng. Methodol.,
vol. 32, no. 1, 2023.

[27] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, N. Malevris, and
Y. L. Traon, “How effective are mutation testing tools? an empirical
analysis of java mutation testing tools with manual analysis and real
faults,” Empirical Software Engineering, vol. 23, pp. 2426 – 2463, 2017.

[28] V. Hurdugaci and A. Zaidman, “Aiding software developers to main-
tain developer tests,” in 2012 16th European Conference on Software
Maintenance and Reengineering. IEEE, 2012, pp. 11–20.

[29] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their ides,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 179–190.

[30] S. Romano, F. Zampetti, M. T. Baldassarre, M. Di Penta, and
G. Scanniello, “Do static analysis tools affect software quality
when using test-driven development?” in Proceedings of the 16th
ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement. New York, NY, USA: Association
for Computing Machinery, 2022, p. 80–91. [Online]. Available:
https://doi.org/10.1145/3544902.3546233

[31] S. Reichhart, T. Gı̂rba, and S. Ducasse, “Rule-based assessment of
test quality,” Journal of Object Technology, vol. 6, pp. 231–251, 2007.
[Online]. Available: https://api.semanticscholar.org/CorpusID:3852703

[32] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 4–15. [Online].
Available: https://doi.org/10.1145/2970276.2970340

[33] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: the developer’s perspective,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 830–840. [Online]. Available: https:
//doi.org/10.1145/3338906.3338945

[34] E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino, “Scalable
approaches for test suite reduction,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2019, pp.
419–429.

[35] S. Wang, M. Wen, Y. Liu, Y. Wang, and R. Wu, “Understanding
and facilitating the co-evolution of production and test code,” in 2021

https://api.semanticscholar.org/CorpusID:15926286
https://doi.org/10.1145/3544902.3546233
https://api.semanticscholar.org/CorpusID:3852703
https://doi.org/10.1145/2970276.2970340
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3338906.3338945


IEEE International conference on software analysis, evolution and
reengineering (SANER). IEEE, 2021, pp. 272–283.

[36] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
test selection,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 2019, pp. 91–100.

[37] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 235–245.

[38] L. Martins, H. Costa, M. Ribeiro, F. Palomba, and I. Machado, “Au-
tomating test-specific refactoring mining: A mixed-method investiga-
tion,” in 2023 IEEE 23rd International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2023, pp. 13–24.

[39] A. M. Arash Vahabzadeh, Andrea Stocco, “Fine-grained test minimiza-
tion,” in In Proceedings of the International Conference on Software
Engineering. IEEE, 2018, pp. 1–10.

[40] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce,
“Evaluating non-adequate test-case reduction,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engi-
neering, 2016, pp. 16–26.

[41] S. Herfert, J. Patra, and M. Pradel, “Automatically reducing tree-
structured test inputs,” in 2017 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE, 2017, pp. 861–
871.

[42] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.
[Online]. Available: https://doi.org/10.1007/s10664-010-9143-7

[43] P. Marinescu, P. Hosek, and C. Cadar, “Covrig: A framework for the
analysis of code, test, and coverage evolution in real software,” in
Proceedings of the 2014 international symposium on software testing
and analysis, 2014, pp. 93–104.

[44] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production and test code,” in 2009 6th IEEE
International Working Conference on Mining Software Repositories,
2009, pp. 151–154.

[45] W. Sun, M. Yan, Z. Liu, X. Xia, Y. Lei, and D. Lo, “Revisiting the
identification of the co-evolution of production and test code,” ACM
Transactions on Software Engineering and Methodology, vol. 32, no. 6,
pp. 1–37, 2023.

[46] H. Do, “Recent advances in regression testing techniques,” Advances in
computers, vol. 103, pp. 53–77, 2016.

[47] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software testing, verification and reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[48] S. U. R. Khan, S. P. Lee, N. Javaid, and W. Abdul, “A systematic review
on test suite reduction: Approaches, experiment’s quality evaluation, and
guidelines,” IEEE Access, vol. 6, pp. 11 816–11 841, 2018.

[49] T. Chen and M. Lau, “A new heuristic for test suite reduction,”
Information and Software Technology, vol. 40, no. 5, pp. 347–
354, 1998. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584998000500

[50] J. Geng, Z. Li, R. Zhao, and J. Guo, “Search based test suite
minimization for fault detection and localization: A co-driven method,”
in International Symposium on Search Based Software Engineering,
2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:
41295271

[51] S. Yoo and M. Harman, “Using hybrid algorithm for pareto efficient
multi-objective test suite minimisation,” Journal of Systems and Soft-
ware, vol. 83, no. 4, pp. 689–701, 2010.

[52] H.-Y. Hsu and A. Orso, “Mints: A general framework and tool for
supporting test-suite minimization,” in 2009 IEEE 31st international
conference on software engineering. IEEE, 2009, pp. 419–429.

[53] M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha, “Reduction
of test suites using mutation,” in Fundamental Approaches to Software
Engineering: 15th International Conference, FASE 2012, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24-April 1, 2012. Proceedings 15.
Springer, 2012, pp. 425–438.

[54] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical
study of the effects of minimization on the fault detection capabilities

of test suites,” in Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272). IEEE, 1998, pp. 34–43.

[55] W. Wong, J. Horgan, A. Mathur, and A. Pasquini, “Test set size
minimization and fault detection effectiveness: a case study in a space
application,” in Proceedings Twenty-First Annual International Com-
puter Software and Applications Conference (COMPSAC’97), 1997, pp.
522–528.

[56] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test
set minimization on fault detection effectiveness,” Software: Practice
and Experience, vol. 28, no. 4, pp. 347–369, 1998.

[57] C. Coviello, S. Romano, and G. Scanniello, “An empirical study of
inadequate and adequate test suite reduction approaches,” in Proceedings
of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement, 2018, pp. 1–10.

[58] C. Coviello, S. Romano, G. Scanniello, A. Marchetto, G. Antoniol, and
A. Corazza, “Clustering support for inadequate test suite reduction,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2018, pp. 95–105.

[59] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical
study of junit test-suite reduction,” in 2011 IEEE 22nd International
Symposium on Software Reliability Engineering, 2011, pp. 170–179.

[60] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating
test-suite reduction in real software evolution,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2018, pp. 84–94.

https://doi.org/10.1007/s10664-010-9143-7
https://www.sciencedirect.com/science/article/pii/S0950584998000500
https://www.sciencedirect.com/science/article/pii/S0950584998000500
https://api.semanticscholar.org/CorpusID:41295271
https://api.semanticscholar.org/CorpusID:41295271

	Introduction
	Creating DelTest
	Step 1: Project selection
	Step 2: Identify candidate commits
	Step 3: Identify candidate deleted tests
	Step 4: Filter refactored tests
	Step 5: Confirm deleted tests

	Empirical Study
	RQ1: How often do developers delete tests?
	Method
	Findings
	Discussion

	RQ2: How many tests do developers delete in projects and commits?
	Method
	Findings
	Discussion

	RQ3: At what levels of granularity do developers delete tests?
	Method
	Findings
	Discussion

	RQ4: Why do developers delete tests?
	Method
	Findings
	Discussion

	RQ5: How many of the developers' deleted redundant tests do TSR approaches identify?
	Method
	Findings
	Discussion


	Implications
	Identify obsolete tests
	Identify redundant tests
	Build, evaluate, and compare test deletion techniques
	Mine developers' deleted tests

	Threats To Validity
	Construct validity:
	Internal validity
	External validity

	Related Work
	Test suite evolution
	Test suite reduction

	Conclusion
	References

