
VALUE-DETERMINISTIC SEARCH-BASED REPLAY FOR

ANDROID MULTITHREADED APPLICATIONS

Ajay Kumar Jha, Sooyong Jeong, and Woo Jin Lee
School of Computer Science and Engineering, Kyungpook National University

1370, Sankyuk-dong, Buk-gu, Daegu, Republic of Korea

ajaykjha123@yahoo.com, kyo1363@naver.com, woojin@knu.ac.kr

ABSTRACT

With the advancement of programming technique like

multithreading added with highly efficient memory model design,

it is becoming very difficult to understand and analyze the

execution behavior of a program. Due to non-determinism in

execution behavior introduced by concurrency-related events the

program may behave differently than expected which may cause

the program to crash. To pinpoint the cause of crash, the

execution which caused the crash must be reproduced. Our

technique solves this problem by recording the concurrency-

related events during program execution and reproducing those

events during replay. For this purpose, our technique records

thread id and value of the shared variables accessed during

program execution while during replay it searches thread space to

generate the same value of shared variable which it observed

while recording.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming –

Parallel programming; D.2.5 [Software Engineering]: Testing

and Debugging – Debugging aids, Monitors, Tracing.

General Terms

Design, Reliability, Experimentation.

Keywords

Reproducing crash, multithreaded programming, field failure,

shared memory, Android.

1. INTRODUCTION
Writing concurrent program is difficult and debugging it is if

not highly then equally difficult. Due to sequential thinking of

most of the programmers, concurrency-related bugs are common

in almost all real-world applications including Android

applications. To fix these bugs, reproducing program executions

in which those bugs were manifested is highly important.

Unfortunately reproducing concurrency-related events in program

execution is quite challenging due to non-determinism. Also,

Android applications are rich in GUI and programmers are

specifically advised not to perform all tasks on the main or UI

thread which results into highly multithreaded applications so

concurrency-related bugs are common in Android applications.

Debugging is all about reproducing the execution and pin-

pointing the bug. Cyclic debugging is still very popular among

programmers in which a program is executed repeatedly and the

part of the program which causes the bug is narrowed down till

the actual bug is found. However in multithreaded applications,

different executions with same input may produce different output

which is mainly caused by unsynchronized access to shared

memory that eventually causes the race condition during program

execution. Debugging race condition is highly complex task due

to possibility of different threads accessing the shared memory

during each execution.

One way to solve this non-deterministic problem in debugging

is to make those non-deterministic events deterministic by

reproducing the execution and this can be achieved by recording

the program execution and with the help of those recorded

execution guide a faithful re-execution during replay. Record and

replay solves the problem of debugging non-deterministic

programs but not without some expanses in the form of execution

time and memory overhead. If record and replay technique is used

for in-house purpose then moderate overhead can be acceptable

but if this technique is used for field failure then even moderate

overhead is unacceptable.

The major obstacle is to reduce the time and memory

overhead so that the technique can be used for debugging of

deployed applications. These overheads are mainly caused by

recording huge volume of data during program execution in the

field. It is obvious that to reduce overhead less data should be

recorded but recording less data has another drawback. Due to the

lack of sufficient data, execution may not be reproduced

accurately. So to reproduce execution accurately while

maintaining the acceptable level of time and memory overhead

tradeoff is required between the volume of data recorded and time

and memory efficiency.

Many capture and replay techniques have been proposed

previously but they all have their own limitations. Content-based

techniques [1, 2, 3, 4, 18] record events and data associated with

those events during capture phase and based on those recorded

information execution is reproduced during replay phase. This

approach generates huge volume of data causing huge time and

space overhead. Another approach for capture and replay

technique is order-based [6, 7, 11, 19] in which only order of

execution events are recorded and based on those ordered events,

execution is reproduced in replay phase. Order-based approach is

more efficient but it has also drawback since slight change in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

RACS’13, October 1–4, 2013, Montreal, QC, Canada.

Copyright 2013 ACM 978-1-4503-2348-2/13/10 …$15.00.

input or environment during replay phase can diverge the

execution path.

In this paper we present a value-deterministic search-based

replay, a content-based technique that reliably reproduces crash in

Android applications with acceptable level of execution and

memory overhead. Our main goal is to reproduce concurrency-

related bugs in Android applications, manifested as crashes,

through a record and replay technique for production usage. Our

technique records the value of shared variables accessed during

program execution while during replay it searches thread space to

generate the same value of shared variable which it observed

during original program execution. The key observation behind

our technique is that the reproduction of same value of shared

variable is sufficient to reproduce the crash even if the thread

access order differs from the original run.

The rest of the paper is organized as follows. Section 2

introduces the background on android applications and overview

on existing techniques. Section 3 presents the detailed procedure

of our record and replay technique with preliminary experimental

results on section 4. Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Android Fundamentals

Android [13] is a Linux based operating system primarily

designed for mobile devices. Android applications are written in

the Java programming language. Android Software Development

Kit (SDK) offers the tools necessary to develop and debug

applications on the Android platform. By default every

application runs in its own Linux process and each process has its

own Dalvik virtual machine. Android starts the process when any

of the application's components need to be executed, then shuts

down the process when it is no longer needed or when the system

must recover memory for other applications.

Application components are the essential building blocks of

an Android application. There are four different types of

application components.

 Activities: An activity represents single screen with which

user can interact. An application generally consists of several

activities. Activities are independent of each other but they may

interact with each other to complete a task. In an application one

activity is specified as “main” activity which is presented to the

user when the application is launched for the first time. Each

activity can then start another activity to perform different tasks.

Activity’s lifecycle is managed by the application framework. An

application that presents anything on the display must have at

least one activity responsible for that display.

 Services: A service is an application component which

performs long-running operations in the background. Another

application component can start or bind a service. If a service is

started then it can run indefinitely in the background and usually

performs a single operation without returning result to the caller

however if a service is bounded then it runs only as long as the

service is bounded to component. A bound service offers a client-

server interface that allows components to interact with the

service, send requests, get results, and even do so across processes

with inter process communication (IPC).

 Content Providers: A content provider manages a shared set

of application data. It encapsulates data and provides that to

application. Through content provider application can access the

data from file, SQLite database, web, or any other persistent

storage location. Content providers are also useful for

manipulating data that is private to the application.

 Broadcast Receivers: A broadcast receiver is a component

that responds to system-wide broadcast announcements. It may

originate from system (e.g. a broadcast announcing that the screen

has turned off, the battery is low, or a picture was captured).

Applications can also initiate broadcast.

2.2 Related Work

Till now large numbers of researches have been performed on

reproducing concurrency-related events deterministically. Some

of the state-of-art techniques are as follows:

Content-based technique jRapture [1] captures interactions

between a Java application and the underlying system by using

modified Java API classes. During replay phase, it presents each

thread with exactly the same input sequence it recorded during

capture. The technique used in capture phase in jRapture has

some practical limitations [12]. ReCrash [2] maintains in memory

a shadow of the call stack with copies of the receiver and

arguments to each method during program execution. The copies

of the receiver objects refer to the original objects on the heap.

When the program fails or crashes, ReCrash serializes the shadow

stack contents, including all heap objects referred to from the

shadow stack. Rather than replaying, ReCrash generates candidate

tests. Since ReCrash does not record thread interleaving, it may

not reproduce concurrency-related failures. SCARPE [3]

identifies the boundaries of the observed set based on the user-

provided list of observed classes and suitably modifies the

application to capture interactions between the observed set and

rest of the system. It overcomes the problem of object serialization

by generating an object ID. ODR [18] is an output deterministic

replay system which ensures that the replay run outputs the same

values as the original run and it does so by searching the different

execution path of the program guided by different sets of events

which it records during original run. The technique enables ODR

to reproduce data race.

Order-based technique CLAP [19] records the thread access

order local to a particular shared program elements instead of

global order and by doing so it reduces the execution overhead.

The CLAP replayer works by controlling the scheduling of

threads to enforce a crash replay under the guidance of thread ids

and shared program elements ids which it records during original

run. RecPlay [6] records the events only at synchronization level.

It is a weak record/replay system because it can only correctly

replay programs that are free of data race. However, it

automatically detects data race when it occurs and stop the

execution. Instant Replay [7] records the version number of each

shared object read by a process during original run and during

replay it recreates the proper input values for that process. It

requires that the operations on each shared object have a valid

serialization and for this it uses concurrent-read-exclusive-write

(CREW) protocol. DejaVu [10] is a Java based record/replay

technique for uniprocessor system. Rather than recording physical

thread schedule, it records the logical thread schedule order at

each critical event, such as synchronization events and shared

variable accesses, in order to reproduce the exact same execution

behavior of the program.

3. CRASH REPRODUCTION
Though android applications are developed in Java

programming language, their organization is quite different than

other Java-based applications. Our technique is specifically

designed for android applications, which has three major

components Data Collector, Checkpoint Detector, and Crash

Detector as shown in figure 1. Data Collector records the

execution events, Checkpoint Detector implements the checkpoint

technique, and Crash Detector detects the crash and generates the

log file. These components are described in detail in section 3.2.

Our technique has three main phases: instrumentation, capture

and replay. In instrumentation phase the application is modified

by inserting probes into the source code before the application is

deployed in the field. During capture phase selected data from

execution of the deployed application is recorded and periodically

stored into a log file while in replay phase data from the log file is

provided as input to execution and the program is replayed for

debugging of field failures.

Figure 1 Overall structure of our system

3.1 Instrumentation Phase
Our capture and replay technique uses AspectJ [16, 17] for

instrumentation. AspectJ is an implementation of aspect-oriented

programming for Java. Existing capture and replay techniques

introduce probe by instrumenting directly in source code [2, 3, 7,

19], modifying API [1] or virtual machine [8, 9], and making

changes in host operating system [5, 14, 21]. The instrumentation

technique which we are using introduces probe into code but it

separates the actual code from the instrumentation code and also

the instrumentation code can be reused in another application.

Code reusability is a huge advantage over existing instrumentation

techniques. With AspectJ it is also possible to enable and disable

the instrumentation code whenever required.

Aspect-oriented programming provides three main constructs

which are join points, advice, and pointcuts. Join points are

specific points within the application which developer would like

to intercept for example join when a method is called. The

purpose for which we are intercepting join points is defined in

advice section for example record signature of a method when the

method is called. The mechanism for declaring an interest in a

join point to initiate a piece of advice is pointcut.

Pointcuts not only intercept join points but also expose part of

the execution context at their join points. Values exposed by a

pointcut can be used in the body of advice declarations. As our

main goal of instrumentation is to capture those values exposed

by pointcut, AspectJ serves the right purpose with additional

advantage of code reusability.

3.2 Capture Phase
The capture phase takes place when the deployed application

starts executing. The application must be instrumented before it is

deployed in the field. When the application runs, the probes in the

code suitably generates events. The events and the data associated

with those events are stored in a list which is an array list

implementation in our system. During the execution if an un-

handled exception is thrown then the un-handled exception along

with the stored events of the list is flushed into a log file. The log

file is then sent to the programmer for replaying the execution.

3.2.1 Data Collector
For any application to crash it must change its state from

normal to crash state and this state transition should be triggered

by some events. Unless we know the behavior of normal state and

events which triggered the transition it’s impossible to reproduce

crash state of the application. Also it’s impossible to know, in

advance, when the application is going to crash so in our capture

phase we record behavior of each state of the application and the

events which triggered the transition.

A method call can change the state of the application by

changing the values of parameters, by changing the values of used

fields, or by returning a value [1]. Our capture technique records

method’s signature, parameters, used fields, returned values, and

any raised exceptions. In case of graphical user interface an

additional value called resource ID is recorded. In this paper we

are not going to discuss further about recording and reproducing

these events since our previous work [20] describes this in detail.

For reproducing concurrency-related events our technique

records two types of events, thread id and value of shared

variables accessed during program execution. Recording the value

of shared variable is straight forward that is whenever the value of

shared variable is accessed (read/write) during program execution

the probe in the code records that value in the list. For recording

thread id, the technique first assigns a unique thread id to each

thread whenever the probe in the code intercepts thread’s start

method during program execution. To reduce the execution

overhead our technique does not record every instance of thread

id when it accesses shared variable during original run instead it

records only once instance per thread within a single activity

component of android application and rearranges the thread

access order with respect to shared variables during replay phase

by using search-based technique. Recording only one instance of

thread id also reduces thread search space during replay phase.

Figure 2 Example code containing data race bug

Figure 2 shows an example in Java programming language

which contains data race bug. We chose this example to illustrate

our technique because Android applications are also written in

Java. The example code has two threads t1 and t2 which access

unprotected shared variable named count. Let’s suppose that the

example code is executed within a single activity component of

Android application.

During capture phase that is during original run, the probe in

the example code intercepts thread’s start method and it assigns

unique thread id 1 and 2 to thread t1 and t2 respectively. At this

execution point the thread id is not recorded but only assigned a

unique id. Thread id is recorded only when it accesses a shared

variable. Figure 3 shows the different instances of example code

executions with thread id in the first column and the value of

shared variable accessed by thread id in the second column in

each three different instances.

Figure 3 Three different instances of example code execution

Let’s go through execution of figure 3 (a). First main thread

accesses value 0 so our technique records name of the thread that

is main and value 0 of shared variable. For main thread the

technique does not assign a unique id so it records name of the

thread but for other threads it records thread id. Now thread 1

accesses value 0 so the technique records thread id and value.

Next, thread 1 accesses value 1. As this is the second instance for

thread 1 accessing shared variable within a single activity so we

do not record thread id again. In this case we only record value of

shared variable. When the execution terminates, the log file looks

like figure 4.

Figure 4 Log file for normal execution of example code

3.2.2 Checkpoint Detector
The target application might run for long period, in such case

huge amount of data will be logged in the file and the size of the

file will grow substantially. To reduce the size our technique uses

activity as a checkpoint because activities are either independent

or loosely-coupled with other Android components. When an

activity starts we record events in the list and when another

activity starts we remove existing data from the list and again we

start recording events in the list. For more details on our

checkpoint technique interested reader can refer to [20].

For reproducing concurrency-related events, the technique

does not remove all the stored events from the list when an

activity is started. It keeps two kinds of events that is name of

activities and thread ids which started within those activities.

Suppose, original run executed three activities A1, A2, and A3

before it crashed and during that execution, suppose four threads

T1, T2, T3, and T4 are started and accessed then after

implementing checkpoint technique the log file will look like

figure 5.

Figure 5 Log file after checkpoint technique

First row in figure 5 shows the name of the activities and

thread ids accessed during complete execution of original run

before crash while the second row shows the value of the shared

variables accessed only during the execution of activity A3 before

crash. The values of shared variables accessed during execution of

activities A1 and A2 are removed by checkpoint technique. Our

checkpoint technique can keep the values of shared variables for

more than one activity which may increase the accuracy of

reproducing crash but it also increases the space overhead.

Keeping the name of the activities and thread ids assures two

important things during replay. First, activity name assures that

the same execution (activity call sequence) path is followed and

second it assures that the same thread is assigned the same unique

id as it observed during capture phase.

3.2.3 Crash Detector
Our capture technique stores events and data associated with

those events in a list during application execution and flush those

data into a log file when the probe in the code intercepts any

unhandled exception thrown by application during original run.

The major events of Data Collector, Checkpoint Detector, and

Crash Detector components are shown in figure 6. The Android

application components communicate with each other by passing

messages which are called intents. Intents are delivered through

method calls. Also one part of a component interacts with another

part of the component through method calls. In our capture phase

we are recording all the events related to method calls so our

capture logic can reproduce the crash caused by any components

of android application.

Figure 6 Main scenarios of our capture technique

3.3 Replay Phase
During replay phase, the crash is reproduced by using value-

deterministic search-based replay. The technique reproduces the

same value of shared variable which it observed during capture

phase by searching thread space because it’s the value of variables

which influence the execution downstream to reproduce the crash.

Data

Collector

Crash

Detector

Checkpoint

Detector

Execution

Android

Application

Record

startActivity()

Clear

Uncaught

Exception
Record

Uncaught

 Exception

Generate

Log

Events
Log

File

alt

For this purpose, it uses the original version of the application

which was deployed in the field and log file generated during the

original run. The technique first introduces probe to assign unique

thread id to each thread whenever its start method is called. This

is done to identify threads during replay. After instrumentation,

the replay technique searches for thread space to generate the

same values which are recorded in log file by controlling the

scheduling of threads using semaphore.

For race execution shown in figure 3 (b), the capture phase

generates log file as shown in figure 7. The replay starts with main

thread so when the main thread reaches at line 5 in example code

shown in figure 2 it generates value 0 which matches with the first

value in log file. Since the value has been matched the execution

proceeds further during replay. Now the execution reaches at

run() method where either threads 1 or 2 can execute the code.

We can replay execution either with thread 1 or thread 2. Let’s

start with thread 1 which generates value 0 at line 8 which is also

matching with the second value log file. Next, thread 1 generates

value 1 at line 9 which is not matching with the third value stored

in log file so the replay technique backtracks the execution to the

last matching point which is at line 8 and then it suspends thread

1. After suspending thread 1, replay starts with thread 2 which

generates value 0 at line 8 which matches with the third value of

log file so the execution proceeds further with thread 2. At line 9,

thread 2 generates value 1 which again matches with the fourth

value of the log file. Since there is no more execution code

remaining for thread 2, it is suspended and thread 1 is resumed

which generates value 1 at line 9. As there are no more values

remaining in the log file, the replay system terminates.

Figure 7 Log file for race execution of example code

As illustrated, either thread 1 or thread 2 can start the replay

within the run() method so our replay technique provide some

relaxation in thread access order. In either case, our replay

technique reproduces the execution containing data race which is

our prime objective.

4. EXPERIMENTAL RESULTS
To assess the performance of our technique, we conducted

preliminary evaluation in an experimental environment. We used

an Android application named KidsMusicLand which has 3457

lines of code, 18 activities, and 21 classes as a test subject for our

preliminary experiment. We chose this test subject because we

wanted to know the additional execution overhead caused by

concurrency-related events with reference to our previous work

[20] which addresses non-determinism caused by input and

environment condition. Figure 8 shows the layout of main activity

of our test subject.

Figure 8 Layout of main activity of our test subject

 The experiment was performed on Intel Core i3 3.10GHz

processor, 4 GB RAM, Windows 7, Eclipse Juno, Android 4.1.2,

JDK 1.5, and AspectJ 1.7.2. To measure the efficiency we

compared execution time of the original and instrumented version

of the application. For this purpose we used debugging tool

named Dalvik Debug Monitor Server (DDMS) which comes

along with Android. For recording execution time, we executed

different activities of the application in sequence then we

measured the execution overhead caused by each activity which is

shown in table 1. First column represents activity name while

second and third column represents execution overhead caused by

our existing technique [20] and current technique respectively.

The execution overhead of current technique also includes the

execution overhead of existing technique.

Table 1 Execution overhead comparison

Activity Name Overhead 1 (%) Overhead 2 (%)

KidsMusicLand 55 55.7

PlaySong 5.4 5.4

HelpMakeSong 4.4 4.4

TransportSound 4.4 4.4

AnimalSound 11 11

MakeSong 41 42.1

BirdSound 7 7

ChildMusic 4.6 4.8

The data in table clearly shows no significant difference in

execution overhead between our existing and current techniques

which is due to the fact that in our current technique the only

additional events which are performed during capture phase are

assignment and recording of unique thread id. We would like to

mention here that our test subject is not highly multithread and

rich in shared variables. In our technique, the execution overhead

is directly dependent on number of threads accessing shared

variables and most importantly on the number of access of shared

variables during program execution.

5. CONCLUSION AND FUTURE WORK
In this paper we presented a capture and replay technique to

reproduce crash caused by concurrency-related events in android

application. Our technique records the partial execution of

deployed application during capture phase and re-executes the

application during replay with the help of log file for reproducing

crash. Preliminary experimental results show that the technique

can be implemented in deployed applications for reproducing

crash. Our approach is simple and easy to implement.

Android application fails in four different ways [15] namely:

freeze, self-reboot, crash, and hang. Currently our technique

reproduces the failure caused by crash only. For recording events

during original run, the technique introduces probe in the source

code which may cause unexpected sequence of events as shown in

figure 3 (c). The figure shows that after thread 1 writes value 1 to

shared variable count, thread 2 reads value 0 of the same shared

variable count which is not possible since the shared variable is

declared as volatile. This type of probe effect can be exposed by

using global counter as shown in figure 9. The first column in the

figure represents global counter. The global counter simply

increments the count by 1 each time a shared variable gets

accessed during original run. Figure 9 clearly shows that the read

event of thread 2 executed before write event of thread 1 but it

has been recorded in reverse order in log file.

Figure 9 Execution instance containing probe effect with

global counter

In future we intend to perform experiment on additional

applications with real crash. Execution overhead caused by our

technique is not perfect for production use so will optimize the

technique to reduce execution overhead. We will improvise the

technique to reproduce other kinds of failures like freeze and

hang. Currently our technique does not record global counter to

expose the probe effect due to the high overhead caused by

recording this event so finally we will come up with technique to

minimize the probe effect.

6. ACKNOWLEDGMENTS
This work was supported by the IT R&D program of MISP

(Ministry of Science, ICT & Future Planning)/KEIT. [10041145,

Self-Organized Software platform (SoSp) for Welfare Devices]

and the MSIP, Korea, under the C-ITRC (Convergence

Information Technology Research Center) support program

(NIPA-2013-H0401-13-1005) supervised by the NIPA (National

IT Industry Promotion Agency.)

7. REFERENCES
[1] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. 2000.

jRapture: A Capture/Replay Tool for Observation-Based

Testing. In Proceedings of the 2000 ACM SIGSOFT

International Symposium on Software Testing and Analysis,

158-167.

[2] Shay Artzi, Sunghun Kim, Michael D. Ernst. 2008. ReCrash:

Making Software Failures Reproducible by Preserving

Object States. In Proceedings of the 22nd European

conference on Object-Oriented Programming, 542-565.

[3] S. Joshi and A. Orso. 2007. SCARPE: A Technique and Tool

for Selective Capture and Replay of Program Executions.

ICSM 2007, 234-243.

[4] J. Clause and A. Orso. 2007. A Technique for Enabling and

Supporting Debugging of Field Failures. In Proceedings of

the 29th International Conference on Software Engineering,

261-270.

[5] S. Narayanasamy, G. Pokam, B. Calder. 2005. BugNet:

Continuously Recording Program Execution for

Deterministic Replay Debugging. In Proceedings of the 32nd

annual International Symposium on Computer Architecture,

284-295.

[6] M. Roneee and K. De Bosschere. 1999. RecPlay: A Fully

Integrated Practical Record/Replay System. ACM

Transactions on Computer Systems. 17, 2 (May 1999), 133-

152.

[7] T. J. LeBlanc and J. M. Mellor-Crummey. 1987. Debugging

parallel programs with Instant Replay. IEEE Transactions on

Computers. C-36, 4 (April 1987), 471–482.

[8] R. Konuru, H. Srinivasan, and J.-D. Choi. 2000.

Deterministic replay of distributed Java applications. In

Proceedings of the 14th IEEE International Symposium on

Parallel & Distributed Processing, 219–228.

[9] J.-D. Choi, B. Alpern, T. Ngo, and M. Sridharan. 2001. A

perturbation free replay platform for cross-optimized

multithreaded applications. In Proceedings of the 15th

International Symposium on Parallel and Distributed

Processing.

[10] J.-D. Choi and H. Srinivasan. 1998. Deterministic replay of

Java multithreaded applications. ACM Sigmetrics Symposium

on Parallel and Distributed Tools, 48–59.

[11] A. Georges, M. Christiaens, M. Ronsse, and K. De

Bosschere. 2004. JaRec: A portable record/replay

environment for multi-threaded Java applications. Software:

Practice and Experience, 34, 6 (May 2004), 523-547.

[12] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse, T.

Ghesquiere, K. De Bosschere. 2003. A Taxonomy of

Execution Replay Systems. International Conference on

Advances in Infrastructure for Electronic Business,

Education, Science, Medicine, and Mobile Technologies on

the Internet.

[13] Android Developers, http://developer.android.com.

[14] S. M. Srinivasan, S. Kandula, C. R. Andrews and Y. Zhou.

2004. Flashback: A Lightweight Extension for Rollback and

Deterministic Replay for Software Debugging. In

Proceedings of the annual conference on USENIX Annual

Technical Conference, 3-3.

[15] Marcello Cinque. 2011. Enabling On-Line Dependability

Assessment of Android Smart Phones. In Proceedings of the

IEEE/IFIP 41st International Conference on Dependable

Systems and Networks Workshops, 286-291.

[16] Introduction to AspectJ.

http://www.eclipse.org/aspectj/doc/released/progguide/startin

g-aspectj.html.

[17] Russell Miles. 2004. AspectJ Cookbook.

[18] Gautam Altekar and Ion Stoica. 2009. ODR: Output-

Deterministic Replay for Multicore Debugging. In

Proceedings of the ACM SIGOPS 22nd symposium on

Operating systems principles, 193-206.

[19] Jeff Huang, Peng Liu, Charles Zhang, Sunghun Kim. CLAP:

Concurrent Lightweight Crash Reproduction. Technical

Report. The HongKong University of Science and

Technology.

[20] Ajay K. Jha and Woo J. Lee. 2013. Capture and Replay

Technique for Reproducing Crash in Android Applications.

In Proceedings of the 12th IASTED International Conference

in Software Engineering, 783-790.

[21] Min Xu, Rastislav Bodik, and Mark D. Hill. 2003. A "flight

data recorder" for enabling full-system multiprocessor

deterministic replay. In Proceedings of the 30th annual

international symposium on Computer architecture, 122-

135.

