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Abstract—Unit tests play a critical role in improving software
quality. However, writing effective unit tests from scratch is
difficult and tedious. One way to reduce this difficulty is to rec-
ommend existing tests of semantically similar functions. However,
modifying the recommended tests manually might still be difficult
and tedious. For example, developers have to understand various
code elements in the recommended tests to accurately replace
them with semantically similar code elements from the target
application. One way to mitigate the issue is by developing a test
migration or reuse technique that could automatically transform
the code elements in the recommended tests and migrate them
to the target application. However, to develop such a technique,
we first need to identify what types of code transformations
are required to successfully migrate the recommended tests.
Therefore, in this paper, we first recruit two external participants
to create JTESTMIGBENCH, a benchmark of 510 manually
migrated JUnit tests for 186 methods from five popular libraries.
We then analyze the code changes in the migrated tests to create
JTESTMIGTAX, a taxonomy of test code transformation patterns.
Our contributions provide the necessary foundations to develop
automated unit test migration or reuse techniques.

Index Terms—unit test migration, reuse, code transformation,
transplantation, benchmark, taxonomy

I. INTRODUCTION

Unit testing is a popular form of testing, where developers
test the behavior of individual components of a software
system. Unit testing plays a vital role in improving the
quality of software by detecting bugs earlier. However, writing
effective unit tests manually from scratch is difficult and
time-consuming. To alleviate the difficulties, researchers have
proposed various unit test recommendation techniques [1]–[4],
which recommend unit tests based on the semantic similarity
of the method to be tested and another method for which
unit tests exist. Developers can then manually modify the
recommended tests to test the target method. Although these
techniques reduce the difficulty of writing tests by suggesting
potential test oracles [2], developers still have to put substantial
effort into modifying the recommended tests. Even semanti-
cally similar methods have some syntactical and behavioral
differences [5], which developers need to adjust in the rec-
ommended tests. They also have to identify the equivalent
counterparts of other code elements in the recommended tests
(e.g., types or constructor calls) from the target application.

One way to further reduce or eliminate the manual effort
required in modifying recommended tests is by developing
test migration or reuse techniques that automatically transform
the recommended tests. However, to develop such techniques,

we have to first identify what types of code transformations
or transplantations are required to successfully transform and
migrate the recommended tests, which in turn requires a
benchmark of migrated tests. Current test reuse and adaptation
techniques [6], [7] do not provide an accessible benchmark of
reused tests, or their data contains a limited number of reused
JUnit tests. Moreover, these techniques do not support much
code transformation, because they reuse tests in the modified
version of the same application or adapt limited code elements
(i.e., test oracles) to insert them into manually created test
templates. Therefore, even the available benchmarks are not
suitable to identify general code transformation patterns.

To address these gaps and create foundations for developing
test migration techniques, in this paper, we first recruit two
external participants to create JTESTMIGBENCH, a benchmark
of 510 manually migrated JUnit tests for 186 methods from
five popular libraries. We then analyze the code changes in
JTESTMIGBENCH to create JTESTMIGTAX, a taxonomy of
test code transformation patterns. JTESTMIGTAX can help re-
searchers in identifying different types of code transformation
that test migration techniques need to support to successfully
migrate unit tests. Researchers can also use JTESTMIGTAX
to compare test migration techniques based on what types
of code transformation they support. Finally, researchers can
use JTESTMIGBENCH to evaluate test migration techniques.
Overall, our contributions are first steps to facilitate the
development, comparison, and evaluation of test migration
techniques. All our data is available on our artifact page1.

II. CONSTRUCTING JTESTMIGBENCH AND JTESTMIGTAX

To create JTESTMIGBENCH and JTESTMIGTAX, we use
a combination of automated and manual approaches. We first
select applications that might have common functionalities.
We then use an automated approach to find semantically
similar method pairs in the selected applications. We manually
validate similar method pairs and check for the existence
of unit tests. We then recruit two external participants to
manually migrate tests to create JTESTMIGBENCH. Finally,
we analyze the code changes in the migrated tests to create
JTESTMIGTAX. We now describe each step.

A. Select Applications

To migrate unit tests, we first need a collection of ap-
plications or libraries that might have semantically similar

1https://www.github.com/STAM-NDSU/JTestMigBench



methods across them. To identify such applications, we lever-
age existing studies that have investigated similar software
components across libraries [2], [7], [8]. From these studies,
we select libraries from the JSON domain, because several
popular JSON libraries are available. Among the 24 Java JSON
libraries listed on the official JSON website2, we select the top
three libraries, JSON-java, google-gson, and fastjson, based
on the stargazer and fork counts of their GitHub repositories.
Additionally, we select commons-lang and guava libraries
from the common utilities domain, because they are commonly
investigated libraries for test recommendation [2], [7]. Overall,
this results in four unique library pairs, three from the JSON
domain and one from the utilities domain.

B. Find Semantically Similar Candidate Method Pairs

To find semantically similar candidate method pairs in
the selected libraries, we build a tool named SMFINDER. It
primarily leverages Word2Vec [9] to find semantically similar
methods. We generate our Word2Vec model using method
signatures present in the Java classes of 29,271 Android appli-
cations from AndroZooOpen [10]. For each method signature,
we consider the method name, parameter types, and return type
and split them by Camel case. The model produces a feature
vector for each word, and the similarity between two words
is determined by the cosine similarity between their vectors.

Given method names Ns and Nt, SMFINDER first splits Ns

and Nt by Camel case and stores the words into two separate
lists Ls and Lt, respectively. For each word in Ls, SMFINDER
then computes the cosine similarity between the word and
each word in Lt and identifies the best matching word from
Lt based on the highest cosine similarity score. SMFINDER
then computes the similarity score Sm by taking the average
of the highest cosine similarity scores obtained for each word
in Ls. For example, Sm for loadExceptionCount and
loadFailureCount is calculated as follows:

load failurecount[ ]
load 1.0 0.2 0.0
exception 0.2 0.6 0.1
count 0.0 0.0 1.0

= (1.0 + 0.6 + 1.0)/3 = 0.9

SMFINDER considers a method pair as semantically similar
if the value of Sm is greater than a threshold value. If
SMFINDER finds more than one similar method in the target
application, it selects the method with the highest similarity
score as the similar method. If multiple methods have the same
highest similarity score, SMFINDER uses Levenshtein [11] to
resolve the conflict and select a similar method.

We set the similarity threshold value to 0.75 and run
SMFINDER on the selected libraries. SMFINDER finds 365
and 1,571 candidate similar method pairs in the three JSON
libraries and two common utilities libraries, respectively.

C. Validate Candidate Method Pairs and Check for Tests

We manually validate the candidate similar method pairs
found by SMFINDER and check for existing unit tests. We

2https://www.json.org/json-en.html

TABLE I: Number of Confirmed Similar Method Pairs

Source Library Target Library # Similar Method Pairs

JSON-java google-gson 27
google-gson JSON-java 11
JSON-java fastjson 31
fastjson JSON-java 37
google-gson fastjson 42
fastjson google-gson 31
commons-lang guava 10
guava commons-lang 10

Total - 199

assign each method pair to two reviewers. Specifically, two
authors validate method pairs from two JSON libraries, and
one of the same authors and a senior undergraduate student3

with one year of industrial experience validate pairs from the
remaining two library pairs. We discuss any disagreements that
arise. We measure inter-rater agreement using Cohen’s kappa.

We validate all the candidate similar method pairs in the
JSON libraries and confirm a total of 127 similar method pairs,
where also at least one method in the pair has tests. We find
that the kappa score is 0.74, which is a substantial agreement.
However, given the large number of candidate pairs in the
utilities libraries, we use a different strategy to select similar
method pairs to review. We target including 20 method pairs
from the utilities libraries. To select these 20 pairs, we sort the
1,571 candidate similar method pairs based on their similarity
score. We manually go through the pairs in this sorted list
(from most similar to least similar) to verify their similarity
and to identify if any method in the pair has a test. We stop
when we reach our goal of 20 similar method pairs with tests.
We manually validated 32 candidate method pairs in the sorted
list to get the 20 similar method pairs.

Overall, we collect 147 similar method pairs from the
selected libraries, where at least one method in the pair has
tests. Note that if both methods in a pair have tests, then we can
migrate tests in both directions. For example, given a method
pair max and maxNum where both methods have tests, we can
migrate the tests of max in the first library to maxNum in the
second library and vice-versa. Among the 147 similar method
pairs, we find 52 method pairs that have tests in both methods.
Taking that into account, overall, we consider test migration
for 199 methods from five different libraries. Table I shows
the number of similar method pairs in each library pair.

D. Migrate Tests Manually

To manually migrate tests for the 199 methods, we ask
two members of our research group, a graduate student4

with five years of experience in Java including two years of
industrial experience, and the member who validated candidate
similar method pairs. Since we migrate tests in both directions,
such as JSON-Java to google-gson and vice-versa, we assign
the methods in one direction to one test migrator and the
methods in another direction to the other test migrator. We
use this technique for JSON libraries, whereas we assign
all the methods from the utilities libraries to the same test

3Xichen Pan, University of Alberta
4Mansur Gulami, University of Alberta



migrator to manage our human resources. Overall, we assign
89 methods to one test migrator and 110 methods to the other
test migrator. We then provide each test migrator with a sheet
that contains the name of the source library, source class,
source method, source test class, target library, target class,
and target method for each validated method pair. We ask
them to manually migrate tests for each method pair with the
following instructions: (1) create a separate test class for each
target method, (2) identify test methods in the source test class
that test the source method (i.e. identify the tests that need to
be migrated), (3) copy the identified test methods along with
any helper method you want to use into the newly created
test class (target test class), and (4) modify the copied test
methods and their helper methods in the target test class so
that the modified tests pass. We ask them to provide us with
their final migrated tests along with the following information:
(1) whether the migrated tests passed or failed, (2) if failed,
the reasons for failure, and (3) any open comments.

Overall, the test migrators identify and attempt the migration
of 571 unit tests for the 199 methods. Among the attempted
migration, they successfully migrate 510 unit tests for 186
methods, which we include in JTESTMIGBENCH. We ana-
lyze the migrators’ comments to understand the reasons for
migration failures. We find that migrations failed mainly due
to implementation differences or the unavailability of similar
software components across libraries.

To give us confidence in the benchmark, we assess the
quality of the migrated tests by measuring line and branch
coverage at the method level using JaCoCo5. We consider
two different scenarios: (1) coverage for only migrated tests
without considering any existing tests for the target method
(do migrated tests test the method’s functionality?), and (2)
increased coverage of migrated tests w.r.t any existing tests for
the target method (do migrated tests augment existing tests?).
To measure increased coverage, we first measure coverage of
the existing tests Cold. If tests do not already exist for the target
methods, we record Cold as 0%. We then measure coverage of
the migrated and existing tests combined Cnew. We calculate
the increased coverage as Cin = Cnew - Cold.

E. Identify Code Transformation Patterns

For each successfully migrated test in JTESTMIGBENCH,
we compare the migrated test with the corresponding original
or source test. We then analyze code changes in the migrated
test to identify code transformation patterns to create JTEST-
MIGTAX. We use a combination of open and closed coding
approaches to create JTESTMIGTAX. The first author of this
paper first manually reviews code changes in 50 randomly
selected migrated tests and writes notes, such as replace a
constructor, to describe the code changes. Based on these
notes, the first author creates labels for the code changes. The
second author then uses a closed coding approach to separately
label the code changes in the 50 migrated tests that the first
author labeled, which means the second author only uses the

5https://www.eclemma.org/jacoco/
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Fig. 1: Data included in JTESTMIGBENCH.

labels already created by the first author. The first and second
authors then discuss the results to resolve any disagreements.
We find that the kappa score is 0.94. Given an almost perfect
agreement, the first author then labels the code changes in the
remaining migrated tests and creates JTESTMIGTAX.

III. JTESTMIGBENCH

JTESTMIGBENCH as shown in Figure 1 contains the 510
successfully migrated JUnit tests with their corresponding
original tests and the code coverage data. JTESTMIGBENCH
also contains all the supporting data, which includes a manual
test migration results sheet containing all the information we
provided to the manual test migrators for test migration and the
responses we received from them. It also includes the library
pairs we selected for test migration, the candidate similar
method pairs found by SMFINDER in the library pairs, and
the 186 manually validated similar method pairs.

We find that the median value for both line and branch
coverage of the migrated tests for the 186 methods is 100%.
The line and branch coverage of the migrated tests for only
3 out of 186 methods is 0%, because these methods throw
exceptions without completing the execution. The results show
that the migrated tests generally cover a large percentage of
the code of the 183 methods, which indicates that the migrated
tests are useful for testing the methods’ functionalities. We
also find that line or branch coverage increased for 35 of the
186 methods. Among these 35 methods, 11 methods already
have tests, while the remaining 24 methods do not. The median
increase in line and branch coverage values for the 35 methods
are 67% and 50%, respectively. Note that the libraries used in
our study are highly popular with many unit tests. Despite
that, we find the migrated tests for the 35 methods provide
some practical values in terms of increased coverage. This
motivates the benefits of the concept of test migration, even
in the presence of existing tests.

IV. JTESTMIGTAX

Figure 2 shows JTESTMIGTAX, a taxonomy of migration-
related code changes. JTESTMIGTAX has three different hi-
erarchy levels. The first level shows the types of operations
we observed in the migrations, such as replace and change.
The second level shows the program elements on which
the operations are performed such as type and method call.
The third level shows more specific information about the
operations or program elements. For example, one-to-many
under method call specifies one method call replaced with
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Fig. 2: JTESTMIGTAX: Taxonomy of migrated-related code
changes

multiple method calls. JTESTMIGTAX also shows the number
of migrated tests in JTESTMIGBENCH with each type of code
change. For example, among the 510 successfully migrated
tests, 490 tests required the replace operation, among which
319 required type replacement. We now briefly describe the
code changes in JTESTMIGTAX.

Unit tests are mainly composed of method/constructor calls
and types. Therefore, most of the successfully migrated tests
(96%) required the replacement of types or method/constructor
calls. Only 20 (4%) migrated tests did not require any replace-
ment of program elements, because these program elements
have the same name in the source and target libraries. Al-
though method and constructor calls are syntactically different
program elements, we find that 160 (31%) of the migrated tests
required the replacement of constructor calls with method calls
or a combination of method and constructor calls. We also find
that the library pairs in our benchmark use different num-
bers of methods to implement the same functional behavior.
Therefore, 93 (18%) migrated tests required the replacement of
one method call with multiple method calls, whereas 30 (5%)
migrated tests required the replacement of multiple method
calls with one method call.

Test oracles are other key elements of unit tests. A test
oracle compares the actual output of a method with the
expected output to determine whether the method works as
specified, usually through an assert statement. The actual
output depends on the test inputs passed to the method
as arguments. We find that 304 (60%) migrated tests re-
quired changes in test oracles, among which 216 (42%)
tests required changes in expected outputs and 154 (30%)
tests required changes in inputs/arguments. Note that a
large number of these changes are only type conversions.
For example, among the 106 migrated tests that required
an argument modification, 66 tests required only argument
type conversion, such as changing add("Hello", new
JsonPrimitive(1)) to put("Hello", 1).

Finally, 258 (51%) tests required the removal of statements
including assertions, types, constructors, and method calls,
mainly because they are irrelevant to test the target methods.

V. DISCUSSION

JTESTMIGBENCH and JTESTMIGTAX have various impli-
cations for advancing unit-test migration techniques.

A. Implications

JTESTMIGTAX shows that automated test migration tech-
niques need to handle mainly three types of code transforma-
tion to successfully migrate unit tests.

(1) Finding and replacing semantically similar code el-
ements. The results show that test migration techniques
need to find and replace semantically similar code elements,
specifically types, constructors, and method calls, which is a
challenging task. Most code clone detection techniques still
struggle to find semantically similar code accurately [12]. In
this work, we used Word2Vec to find similar methods, which
is also not 100% accurate. The results also show that test
migration techniques also need to consider code replacement
between different program element types (i.e., constructors and
method calls) and different cardinalities (e.g., one method call
with multiple method calls). These types of code transforma-
tion further increase the complexity of finding and replacing
similar code elements. Overall, to successfully find and replace
semantically similar code elements, we need to improve the
accuracy of existing code clone detection techniques and
develop new techniques that consider the similarity between
different types of code elements and different cardinalities.

(2) Modifying test oracles. The majority of the migrated
tests (60%) required changes in test oracles. These changes are
syntactical (i.e., change in type) and behavioral (i.e., change in
value). Test migration techniques need capabilities to handle
both syntactical and behavioral changes. One way to handle
the syntactical changes is by manually creating a database of
convertible types for commonly used data types as done by
Sondhi et al. [7], but this is limited. Ideally, we need to develop
techniques, perhaps using machine learning, to automatically
identify convertible data types. To handle behavioral changes,
specifically expected outputs, we could execute the target
method and use the actual output as the expected output.
However, if the target method has bugs, the expected output
would be incorrect. A human-in-the-loop approach could be
used to handle both types of changes [13].

(3) Removing irrelevant code elements. A large number of
migrated tests (51%) required the removal of code elements
that are irrelevant to test the target methods. Therefore, test
migration techniques need to identify and remove irrelevant
code elements. Otherwise, they might cause compilation errors
if the target library does not have their equivalent counterparts.
While removing any elements that the migration technique
could not transform is one possible solution, this may lead
to also removing relevant code. A more sound approach is to
perform control/data flow analysis in the original test, remove
the code elements that are irrelevant to test the source method,
and then perform the other types of code transformation.

In addition to identifying different types of code trans-
formation that test migration techniques need to support,
JTESTMIGTAX along with JTESTMIGBENCH can also help



in comparing and evaluating test migration techniques. For
example, we can compare test migration techniques based on
what types of code transformation in JTESTMIGTAX they
support. Also, the unit tests in JTESTMIGBENCH can be used
to evaluate test migration techniques.

B. Threats to Validity

Internal Validity. We use only one test migrator per test to
create JTESTMIGBENCH. However, we measure the coverage
of the migrated tests to show the quality of JTESTMIGBENCH.
We rely on manual analysis for several steps, which is gen-
erally subject to mistakes and biases. To mitigate the threats,
two validators independently validated similar method pairs,
checked for the presence of tests, and identified code changes.

External Validity. JTESTMIGTAX is based on the code
changes in 510 migrated tests for 186 methods. Although
JTESTMIGTAX is based on a small number of migrated tests,
these tests have diverse types of code changes, mainly due to
the highly diverse functional behavior of JSON libraries [8].

Construct Validity. Due to the absence of a test migration
benchmark, we first create JTESTMIGBENCH and then iden-
tify code changes. However, there is not only one way to mod-
ify and migrate tests. To mitigate the threat, we exclude the
code changes related to style improvement in JTESTMIGTAX.

VI. RELATED WORK

Test tracing and recommendation are preliminary and nec-
essary steps for test migration. White et al. [14] use various
criteria, such as the similarity of method and test names, to
automatically establish test-to-code links. Since the automated
approach is not 100% accurate, our test migrators use a manual
approach to identify the relevant unit tests to migrate. Built
on test tracing techniques, test recommendation techniques
recommend tests based on the similarity of the methods [1]–
[3]. Similar to some of these techniques, SMFINDER also uses
word2vec and Levenshtein to find similar methods.

Makady and Walker [6] proposed SKIPPER to reuse unit
tests in the modified version of the same application. They
removed some code (fields, methods, or classes) from the orig-
inal application to create a modified version of the application.
Therefore, SKIPPER does not need to perform various types
of code transformation, which makes it unsuitable to identify
general code transformation patterns. Moreover, it does not
provide an accessible benchmark of reused tests. White et
al. [2] adapted some of the recommended tests manually
to show the real-world applicability of test recommendation
techniques, but they adapted tests for only 12 methods. Sondhi
et al. [5] manually reused unit tests for some of the similar
functions they identified across libraries. They later extended
this study and proposed METALLICUS to reuse oracles of
the recommended tests automatically [7]. However, instead
of directly transforming the code of the recommended tests,
METALLICUS extracts oracles from the recommended tests
and inserts them in the test templates manually created for the
target applications. Therefore, METALLICUS only identifies
code transformation related to test oracles. Moreover, the

dataset includes only 17 reused JUnit tests (i.e., test templates)
for 17 methods. Overall, these studies are limited in identifying
code transformation patterns or providing reused JUnit tests.

Similar to Zhao et al. [15]’s work that provides a benchmark
for evaluating UI test reuse techniques, our work provides
a benchmark and taxonomy to facilitate the evaluation and
advancement of unit test reuse techniques.

VII. CONCLUSION

In this paper, we created JTESTMIGBENCH, a benchmark
of 510 manually migrated tests for 186 methods from five pop-
ular libraries, and JTESTMIGTAX, a taxonomy of migration-
related code changes. We also discussed various challenges in
transforming and migrating recommended tests to the target
applications. Our contributions can facilitate the development,
comparison, and evaluation of unit test migration techniques.
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