
Annotation practices in Android apps
Ajay Kumar Jha

Department of Computing Science
University of Alberta, Edmonton, Canada

ajaykum1@ualberta.ca

Sarah Nadi
Department of Computing Science

University of Alberta, Edmonton, Canada
nadi@ualberta.ca

Abstract—Understanding the adoption and usage of any pro-
gramming language feature is crucial for improving it. Existing
studies indicate that Java annotations are widely used by develop-
ers. However, there is currently no empirical data on annotation
usage in Android apps. Android apps are often smaller than gen-
eral Java applications and typically use Android APIs or specific
libraries catered to the mobile environment. Therefore, it is not
clear if the results of existing Java studies hold for Android apps.
In this paper, we investigate annotation practices in Android apps
through an empirical study of 1,141 open-source apps. Using
previously studied metrics, we first compare annotation usage in
Android apps to existing results from general Java applications.
Then, for the first time, we study why developers declare custom
annotations. Our results show that the density of annotations and
the values of various other annotation metrics are notably less
in Android apps than in Java projects. Additionally, the types
of annotations used in Android apps are different than those
in Java, with many Android-specific annotations. These results
imply that researchers may need to distinguish mobile apps
while performing studies on programming language features.
However, we also found examples of extreme usage of annotations
with, for example, a large number of attributes, as well as a
low adoption rate for most annotations. By looking at such
results, annotation designers can assess adoption patterns and
take various improvement measures, such as modularizing their
offered annotations or cleaning up unused ones. Finally, we find
that developers declare custom annotations in different apps
but with the same purpose, which presents an opportunity for
annotation designers to create new annotations.

I. INTRODUCTION

Annotations are a form of metadata used to associate
additional information to program elements. For example, the
@Override annotation informs the compiler that a method
is overridden. Annotations are an integral part of any pro-
gramming language and can be used for various purposes,
such as compiler guidance or run-time processing [1]. Most
annotations are predefined by the programming language or
frameworks/libraries such as Android or JUnit. Developers
can also declare and use custom annotations for their specific
needs, such as generating boilerplate code. Researchers have
also used annotations for tasks such as code inspection [2],
[3], code comprehension [4], or code generation [5].

Studying the adoption and usage of language features
(e.g., lambda expressions [6], generics [7], and exception
handling [8]) is integral to improving these features and
advancing a language [9]–[11]. Similarly, the study of an-
notations can help practitioners and researchers in improving
annotation usage. For example, some practitioners have argued
for or against the use of annotations [12]–[15] or warned

about overusing annotations, with the argument that they can
hinder the readability and maintainability of code [16], [17].
However, most of these arguments are based on anecdotal
evidence from personal experiences without being grounded
with empirical evidence about wide-spread annotation usage.

Given the above needs, researchers have performed some
empirical studies to characterize annotation usage in Java
projects [9], [18]–[20]. However, no study exclusively focused
on annotation usage in Android apps. Although many Android
apps are written in Java, it is not clear if their different
nature may lead to different annotation usage patterns. For
example, the size of Android apps are typically smaller than
general Java projects, which might result in differences in the
the prevalence of annotation use. It is also not clear if the
same annotations used in Java applications are also used in
Android apps, especially since there are Android Application
Programming Interfaces (APIs) that are specifically tailored
to the resource-constrained mobile environment. Moreover,
the Android framework declares various annotations (e.g.,
@TargetApi) that can be used only in Android apps [21].
Thus, the results of existing Java annotation studies [9], [18]–
[20] may not necessarily hold for Android apps.

In this paper, we study annotation usage in Android apps.
We perform an empirical study of 1,141 Android apps, where
we investigate previously studied phenomena and also study
new characteristics. More specifically, we answer the follow-
ing three research questions, and share an artifact [22]:
• RQ1: What is the distribution of annotation usage in

Android apps? Using 10 existing annotation metrics [19],
[20], we perform a replication study where we quantitatively
investigate annotation usage in Android apps and compare
the results to existing Java findings. We also identify apps
with extreme usage of annotations [19]. Our results show
that, similar to Java, the use of annotations is pervasive in
Android apps (99.7% of apps). However, the characteristics
of annotation usage in Android apps are different from
general Java projects. We find that the median values for
annotations per app and annotation per line of code in the
studied apps are 86 and 0.02, respectively, which is much
less than the counterpart values of 1,707 and 0.4, respec-
tively, for general Java projects [20]. While we find that
annotation usage at different granularity levels in Android
apps are overall less than general Java applications, there are
some apps that demonstrate extreme annotation usage [16],
[17] where, for example, an annotation spans up to 73 lines

1

of code or uses up to 15 attributes.
• RQ2: Which annotations are used in Android apps? We

categorize annotations used in Android apps into annotations
from the Java language, Android framework, third-party
libraries, or custom defined annotations. By analyzing the
number of annotations and their frequency in each category,
we can understand which annotations are used and whether
Android apps use annotations that are different from those
in general Java applications. Our results show that Android
apps use 91 unique Android framework annotations and only
31 unique Java annotations. This shows that the majority of
unique annotations are specific to the Android framework.
However, the adoption rate for most of these annotations is
low. We also found some differences due to characteristics
of Android apps: while previous work shows that three
annotations of the Java Persistence API (JPA) are in the list
of top-10 frequently used annotations in Java projects [18],
we find that Android apps instead use the lightweight
Android library Room [23] for persistence, because JPA
cannot be used in Android apps.

• RQ3: Why do developers declare their own annotations?
Previous annotation studies did not investigate why develop-
ers declare their own annotations. Not only is this a question
that gets asked by real developers [24], but finding these rea-
sons can also help third-party annotation providers improve
their annotation designs and offerings by incorporating some
of the frequent needs into their annotations. We find six
categories of custom-declared annotations, which include
data persistence, field validation, and marking elements for
specific purposes such as API discoverability [25].
Our results provide an empirical characterization of anno-

tation usage in Android apps, and have several actionable
implications for practitioners, tool builders, and researchers.
For example, we find that there are a few annotation usages
with a high number of attributes, while our investigations
show that some annotation designers retroactively modularize
annotations or remove attributes from the annotations that
declare a large number of attributes. Annotation designers can
use our empirical data on attribute usage to improve the
modularization of their annotations. Our studied adoption
rates can help annotation designers to identify and clean
up unused annotations. Our first-time analysis of custom
annotations provides insights for library designers to offer
new annotations. For example, we find some custom anno-
tations from different apps with the same purpose, such as
identifying Java native code; this presents an opportunity for
annotation designers to design new libraries for this purpose.
Interestingly, we find that many custom annotations are created
for data persistence (specifically marking Java classes/fields
that correspond to database tables/columns) while libraries
for such purposes do exist [23]. Future researchers can
investigate what motivates developers to create a custom
annotation over using an existing library. Finally, since our
results show that annotation usage in Android is different
than Java, we recommend that researchers consider this
distinction in future studies.

/ / meta−a n n o t a t i o n s
@Retent ion (R e t e n t i o n P o l i c y . RUNTIME)
@Target (ElementType . TYPE)
p u b l i c @ i n t e r f a c e SEConference { / / a n n o t a t i o n body

S t r i n g name () ;
S t r i n g l o c a t i o n () ;
S t r i n g y e a r () d e f a u l t “2020” ;

}
Listing 1. Annotation type declaration in Java

II. BACKGROUND

Annotations in a programming language are used to add
metadata to program elements, which can be used for various
purposes. For example, a compiler can use the metadata for
code inspection and a library, e.g., JUnit, can use the metadata
for customizing a program’s behavior. Built-in annotations are
predefined by programming languages, frameworks, and third-
party libraries, while custom annotations are those declared
by developers in their own applications. We now describe the
process of declaring, using, and processing Java annotations.

An annotation declaration looks similar to a Java interface
declaration, except the keyword interface in an annotation
declaration is preceded by the “@” sign. Listing 1 shows an
annotation declaration named SEConference. An annotation
declaration has mainly two parts: a body and meta-annotations.
An annotation declaration body contains element declarations.
As shown in Listing 1, elements look similar to methods
but do not have any parameters or body. They mostly act
like fields. The elements can have default values and their
return types must be one of the following: primitive types,
String, enum, Class, annotations, or arrays of any of above.
Similar to annotations, meta-annotations can be of built-in or
custom types. Java has some key built-in meta-annotations
such as @Retention and @Target. The @Retention
meta-annotation specifies how long the declared annotation
should be retained. Depending on its value SOURCE, CLASS,
or RUNTIME, the annotation is available in the source file,
class file, or at run time, respectively. The @Target meta-
annotation specifies program elements to which the declared
annotation can be associated such as type, method, or field.

Listing 2 shows an example usage of @SEConference,
which can be associated with Class, interface, or enum pro-
gram elements since its target element is TYPE. The value of
each annotation element must be assigned when the annotation
is used, unless the annotation element declares a default value.

Annotations are processed differently based on the retention
policy. For annotations declared with a SOURCE or CLASS
retention policy, the annotation creator provides an annotation
processor to process the declared annotation. The annotation
creator first writes an annotation processor and then registers
the processor with the Java compiler. During compile-time,
the compiler scans the code for the specified annotation and
processes the annotation as defined in the annotation processor.
For annotations declared with a RUNTIME policy, the anno-
tation creator provides reflection code to process the declared
annotation. The Java Virtual Machine uses the reflection code
to retrieve the metadata and customize the program behavior.

2

@SEConference (name=“SCAM” , l o c a t i o n =“Australia”)
p u b l i c c l a s s MyConference { . . . }
Listing 2. Example annotation usage of the annotation declared in Listing 1

III. RELATED WORK

We divide previous work related to annotations into three
categories: annotation usage (most related to our work), anno-
tation misuse, and applications of annotations.

a) Annotation usage: Rocha and Valente [18] investi-
gated 106 open-source Java projects to find what types of
annotations are frequently used and what types of program
elements frequently use them. They found that annotations
related to code inspection, testing, and data persistence are
frequently used in Java projects, and most of the annotations
(over 90%) are used on methods. Lima et al. [19] defined seven
annotation metrics to study annotation usage patterns. They
analyzed 25 open-source Java projects to calculate frequency
threshold values for these metrics. The frequency threshold
values represent frequent or rare annotation usage phenomena.
Yu et al. [20] investigated 1,094 open-source Java projects to
find annotation usage distribution, annotation evolution, and
impact of annotations on code error-proneness. Our work is
inspired by these three studies. We perform a replication study
where we investigate the frequency distribution of annotations
by reusing the existing metrics. However, we focus our em-
pirical study on Android apps and compare our findings to the
existing knowledge on general Java projects. We additionally
investigate different types of Android framework annotations,
third-party library annotations, custom annotations and their
purpose and usage, all of which are not investigated by these
existing studies. Finally, our data set consists of 1,141 open-
source Android apps, which is larger than the data set used
for the first two studies, and comparable in size to the third.

There are also existing studies of other language features
that touch upon annotations. Parnin et al. [7] investigated the
adoption of Java generics in 40 open-source Java projects. In
the process, they compare the adoption rate of Java generics to
that of annotations since both language features were released
around the same time. Similarly, Dyer et al. [9] investigated
18 Java language features, including annotations, in 31k open-
source Java projects. However, both these studies discuss only
the frequency of annotation usage in Java projects, but do not
delve into the various types of annotations as our work does.

b) Annotation misuse: An annotation misuse character-
izes any use of annotations that do not conform to the given
specifications, which may be explicitly defined in documenta-
tion or implicitly represented by the annotation declaration.
Pinheiro et al. [26] mined GitHub repositories to create a
data set of annotation misuse in Java and C# projects, and
they designed mutant operators to detect annotation misuse.
Cordoba-Sanchez and Lara [27] proposed a domain-specific
language and a tool to design and validate Java annotations.
Similarly, Darwin [28] proposed a tool to verify the correct
usage of annotations in Java. We do not provide tools or
techniques to detect annotation misuse. However, our findings
can help developers in avoiding annotation misuse.

TABLE I
DESCRIPTIVE STATISTICS OF THE STUDIED APPS

Size in KLOC Star Count in GitHub

Range No. of Apps Range No. of Apps

0≤1 223 0≤50 646
1≤10 600 51≤100 152
10≤25 153 101≤200 127
25≤50 97 201≤500 95
>50 68 >500 121

Reviews in Play Store Installs in Play Store

Range No. of Apps Range No. of Apps

0≤1.0 54 0≤1,000 181
1.1≤2.0 2 1,001≤10,000 214
2.1≤3.0 21 10,001≤50,000 68
3.1≤4.0 176 50,001≤100,000 92
>4.0 401 >100,000 99

c) Applications of annotations: Eichberg et al. [3] used
annotations to verify properties of program elements. Tan et al.
[2] used annotations to detect concurrency bugs in the Linux
kernel. Sulir et al. [4] investigated the recording of developers’
concerns as annotations to improve program comprehension.
Although we investigate the purpose of custom annotations,
we do not design or propose new use cases for annotations.

IV. DATA SET CURATION

This section describes our selection of study subjects (i.e.,
Android apps) and the tools we use to extract annotation usage.

A. Study Subjects

We use F-Droid [29], a repository of free and open-source
Android apps, to select apps. We collect URLs of all the apps
stored on F-Droid and select only those apps that are hosted
on GitHub, resulting in a total of 1,209 apps. We limit our
study to the apps hosted on GitHub to filter inactive apps.
We further limit our study to apps that are written in Java to
allow us to compare our results with the existing studies on
annotation usage in general Java projects. Therefore, among
the 1,209 collected apps, we remove 45 apps written in Kotlin
and 2 apps written in Xtend. We also remove 21 apps that do
not have source files or whose source files are archived. This
leaves us with 1,141 Android apps that we use for our study;
654 of these apps (57%) are also available on Google Play.

Table I shows the descriptive statistics of the studied 1,141
apps, which include the apps’ internal and external properties
such as size in lines of code (LOC), star count on GitHub,
user reviews on the Play store, and install counts on the Play
store. Note that the properties related to the Play store are
available only for the 654 apps listed there; these apps belong
to 31 different app categories such as tools, games, shopping,
communication, etc. Overall, the descriptive statistics show
that our data set contains apps with varying size and popularity.

B. Extracting Annotations

Rocha and Valente [18] used apt (Annotation Processing
Tool) [30] to extract annotation data. However, apt has been
deprecated since Java SE 7. Moreover, the authors reported
that the tool could not retrieve annotations used in anonymous

3

TABLE II
DESCRIPTION OF ANNOTATION METRICS FROM LIMA ET AL. [19] AND YU ET AL. [20] THAT WE USE IN RQ1

Annotation Metrics Name Metric Origin Annotation Metrics Description

Annotations per app [20] Number of annotations in an app
Annotations per file [20] Number of annotations per line of code for each file
Annotations per program element [20] Number of annotations per annotated program element (e.g., method or class)
Attributes in Annotation (AA) [20] Number of attributes used in an annotation.
LOC in Annotation (LOA)∗ [19] Number of lines of code occupied by an annotation.
Annotation Nesting Level (ANL) [19] Number of nesting levels in an annotation.
Annotations per Program Element (APE)∗ [19] Number of annotations used on a program element.
Annotations in Class (AC) [19] Number of annotations in a class.
Unique Annotations in Class (UAC) [19] Number of distinct annotations in a class.
Annotation Schemas in Class (ASC) [19] Number of different annotation schemas (i.e., packages) in a class.
∗Lima et al. [19] used the terms annotation definition, annotation declaration, and annotation use interchangeably when referring to an annotation usage (e.g., Listing 2). For
consistency and clarity, we changed the wording of some metric names; for brevity, all metrics simply use the term annotation to refer to an annotation usage. We changed the
name of LOC in Annotation Declaration (LOCAD) to LOC in Annotation (LOA) and Annotation in Element Declaration (AED) to Annotations per Program Element (APE). Note
that Lima et al. calculate APE across all program elements not just across annotated program elements.

classes, which have been supported since Java SE 8. Lima
et al. [19] developed Annotation Sniffer [31] to extract the
values of their proposed annotation metrics from source files.
However, Annotation Sniffer also cannot retrieve annotations
used in anonymous classes; additionally, if a Java source file
has more than one class, it retrieves annotations of only one
class. Yu et al. [20] implemented their own extractor based on
the Spoon library [32]. To avoid the above problems, we also
implement our own annotation extraction and analysis tooling,
but base it on a more popular library named JavaParser [33].

We use JavaParser APIs to extract annotations from the
source code. For each app, we obtain the AST of the Java code.
We then identify annotation uses and annotation declarations
in the AST. We also identify different program elements
on which the annotations are used. Moreover, we analyze
the fully qualified name of the annotations and the import
statements to distinguish different types of annotations such
as Java, Android framework, or third-party library annotations
(RQ2). We collect and store all annotation usage data for each
app. Finally, we use Guava [34] to calculate the descriptive
statistics. All our code and data is available online [22].

V. ANNOTATION USAGE IN ANDROID APPS

In this section, we present the results of our study. For each
research question, we describe the motivation behind studying
that question. We then describe the method used to answer the
question and then describe the obtained results.

A. RQ1: What is the distribution of annotation usage in
Android apps?

1) Motivation: Existing studies showed that the use of
annotations is pervasive in general Java projects [9], [18]–
[20]. However, Android apps are typically smaller in size than
other Java applications. For example, the size of 72% of the
apps used in this study is less than 10 KLOC whereas the
size of only 8-9% of the Java projects used in the existing
studies is less than 10 KLOC [18], [19]. Therefore, in this
first RQ, we perform a replication study of the quantitative
metrics presented in previous work. Our goal is to understand
the distribution of annotation usage in Android apps, and
determine whether it is different from Java projects. Given

existing arguments against excessive annotation usage [16],
[17], we are also interested in looking at examples of real
Android apps with extreme annotation usage, if any.

2) Method: To analyze the distribution of annotation usage
in Android apps, we reuse 10 metrics studied in previous
work [19], [20], and described in Table II, and compare our
findings to the published findings for general Java projects. We
calculate each metric for each app in our data set and report
the distribution across all apps. For the seven metrics reused
from Lima et al. [19], the original authors used a percentile
rank analysis method to understand the typical value of
each metric. Such typical values can help identify anomalous
usages of annotations, such as overusing annotations, which is
commonly frowned upon from a maintenance and readability
perspective [16], [17]. To compare our results with theirs, we
also follow their analysis method, which works as follows.

For each metric, they first calculate the distribution of
the values per project and calculate the corresponding 90th
percentile, 95th percentile, and 99th percentile. They then cal-
culate the mean of each percentile value across all the studied
projects. For each metric, they define frequency thresholds
according to the average percentile value as very frequent
(90th percentile), frequent (95th percentile), and less frequent
(99th percentile). For example, let us assume that the 90th
percentile for the annotations in class (AC) metric from
Table II is 10, then we can say that having a class with 10
or less annotations is a very frequent phenomenon. On the
other hand, if the 99th percentile is 20 annotations in a class,
which means it is a less frequent phenomenon, then we can
deduce that classes with more than 20 annotations demonstrate
extreme usage. Based on our frequency results, we manually
analyze a few extreme cases (i.e., apps with particularly high
metric values) to understand extreme annotation usages.

3) Results: We find that 1,137 of the 1,141 apps (99.7%)
have at least one annotation, and that there are 382,074
annotation usages in total. We could not find any distinguish-
ing characteristics for the 4 apps not using annotations; we
focus on the 1,137 apps with annotations for the rest of the
study. Similar to recent findings showing that all studied Java
applications contained annotations [20], our results similarly
show that annotation usage is also pervasive in Android apps.

4

Fig. 1. Annotation density per app for 1,137 studied apps.
TABLE III

ANNOTATIONS PER ANNOTATED PROGRAM ELEMENT

Num. Annotations Num. Elements Num. Annotations Num. Elements

1 352,946 6 12
2 12,711 7 4
3 1,052 8 5
4 69 9 6
5 9 >10 3

Density metrics. We first discuss the first three metrics
from Table II related to annotation density across different
granularity levels. Figure 1 shows the violin plot for the
number of annotations per app for the studied 1,137 apps. The
number of annotations per app ranges from 1 to 11,314 with a
mean and median value 336 and 86, respectively. This median
value is much less than the median of 1,707 annotations per
app found by Yu et al. [20]. In general, we find that 79% of
the apps use less annotations than the mean value, while 84%
of the apps have less than 500 annotations. Only 35 apps show
extreme values, with more than 2,000 annotations each.

Figure 2 shows the the violin plot for the density of
annotations per LOC for the 78,791 Java files in the studied
apps. We find that 94% of the files have a density between
0.0 and 0.1, whereas only 29 files have a density larger than
0.5. A density of 0 indicates that a file does not have any
annotations while a density of more than 0.5 means that the
file contains annotations that occupy more lines of code than
the actual code in the file. Overall, the density per LOC ranges
from 0.0 to 1.31 for the studied files with a mean and median
value of 0.03 and 0.02, respectively. This is notably less than
the median value of 0.4 obtained by Yu et al. [20].

Table III shows the density of annotations per program
element. We can see that most annotated program elements
(96%) have only one annotation. We find only 30 annotated
program elements that each have more than 5 annotations,
with 13 being the maximal number of annotations on a single
program element. Yu et al. [20] also found that most of the
program elements (99%) have 1 or 2 annotations. However,
they found 2,978 of the 4,462,419 program elements that each
have more than 5 annotations, which is much higher than the
only 30 program elements we find.

Threshold Values. We now discuss the threshold values
for the remaining seven metrics, proposed by Lima et al. [19],
from Table II. Table IV shows the threshold values of these
metrics which we obtained for Android apps versus the
threshold values obtained by Lima et al. [19] for Java projects.

Fig. 2. Annotation density per LOC for 78,791 studied Java files

We also show the highest metric value in each case. The
results in Table IV show that, with only rare exceptions for
ASC and ANL, most of the frequency threshold values for
Android apps are less than their corresponding frequency
values for Java projects. Overall, these results demonstrate
that annotation distribution in Android apps across different
metrics is generally less than annotation distribution in Java
projects. However, it is interesting to note that the highest
observed values for the attributes in annotation (AA) and LOC
in annotations (LOA) metrics are actually higher than those in
Java projects. We investigate these two metrics more closely.

The attributes in annotations (AA) metric measures the
number of attributes used in an annotation. For example, the
@SEConference annotation in Listing 2 uses 2 attributes,
name and location. Using a high number of attributes in an
annotation can affect the readability and maintainability of the
annotation [19]. Buse and Weimer [35] found that the number
of identifiers in a line of code has strong negative impact on
code readability. Thus, it is useful for annotation users to avoid
using many attributes. It is also useful for annotation designers
to be aware of how their attributes are being used and perhaps
redesign the annotation to offer less attributes by, for example,
breaking it into two or more annotations.

Among 382,074 studied annotations, we find that 91% do
not use any attributes while only 0.4% of the annotations use
more than one attribute. The very frequent, frequent, and less
frequent threshold values of the AA metric are 0.23, 0.42, and
0.71, respectively. Based on the less frequent threshold, we
can conclude that it is rare for annotations in Android apps to
use more than one attribute. We, therefore, manually analyze
21 annotations that demonstrate extreme behavior where they
use more than 5 attributes. We find that 19 of the 21 anno-
tations are @ReportsCrashes annotations of the ACRA
library [36], which can have a maximum of 41 attributes.
The remaining 2 annotations are @ModulePrefs annotations
from Google Web Toolkit [37], which can have a maximum
of 21 attributes. While some app developers used more than
five of these available attributes for both annotations, we also
observed that 16 attributes of @ReportsCrashes and 14
attributes of @ModulePrefs are not used at all in the studied
apps. In general, while attributes provide some flexibility in
customizing the annotation’s behavior, they may reduce its
modularity. Therefore, if an annotation contains a large number

5

TABLE IV
THRESHOLD VALUES OF THE ANNOTATION METRICS FROM LIMA ET AL. [19], AS DEFINED IN TABLE II. ↑ SHOWS ANDROID THRESHOLDS THAT ARE

HIGHER THAN THEIR JAVA COUNTERPARTS, ↓ SHOWS THOSE LOWER, AND − SHOWS VALUES WITH NO CHANGE.

Metrics Android Apps Java Projects Lima et al. [19]

Very Frequent Frequent Less Frequent Highest Value Very Frequent Frequent Less Frequent Highest Value

AA ↓ 0.23 ↓0.42 ↓0.71 ↑15.00 1.00 1.00 2.00 9.00
LOA − 1.00 −1.00 ↓1.05 ↑73.00 1.00 1.00 2.00 58.00
ANL −0.00 −0.00 ↓0.00 ↓1.00 0.00 0.00 0.08 4.00
APE ↓0.50 ↓0.88 ↓1.07 ↓13.00 1.00 1.00 2.00 27.00
AC ↓7.26 ↓10.26 ↓17.06 ↓269.00 11.00 20.00 62.00 729.00
UAC ↓2.22 ↓2.74 ↓3.84 ↓144.00 3.00 4.00 9.00 375.00
ASC ↑1.61 ↓1.77 ↓2.01 ↓9.00 1.50 1.80 2.40 13.00

of attributes and it is being used by developers, annotation
designers should consider remodularizing the annotation by
looking at our metric results related to the usage of available
attributes. For new annotations, annotation designers may
consider limiting the number of attributes they offer to less
than the frequent threshold value.

The LOC in annotation (LOA) metric measures the number
of lines of code occupied by an annotation. For example,
the @SEConference annotation in Listing 2 uses only 1
line of code. Among the studied annotations, we find that
99.9% annotations have a LOA value of 1. The very frequent,
frequent, and less frequent threshold values are 1.00, 1.00, and
1.05, respectively. This indicates that most annotations simply
span one line, which is what one would expect. Interestingly,
we find a few number of annotations that have a large LOA
value reaching up to 73, which is actually higher than the
highest value observed in Java projects. Such extreme LOA
values can affect the readability and maintainability of the
annotations [19]. Although breaking up a statement across
multiple lines improves readability, an annotation occupying
a large number of lines increases the average number of
identifiers per line, which negatively affects readability [35].

We manually analyze 10 annotations that span more
than 20 LOC. We find that 3 of these 10 annotations are
from the ACRA library, such as @ReportsCrashes and
@AcraCore annotations. As previously mentioned, these
annotations also have a high AA value (4-10); naturally,
using multiple attributes forces the annotation to span multiple
lines. The remaining 7 annotations are of type @Module,
@IntDef, and @JsonPropertyOrder. Although these 7
annotations have a very high LOA value reaching up to 73,
they only have 1 or 3 attributes. However, these attributes
expect a long list of values, which again results in spanning
multiple lines. In general, it seems that the number of attributes
or the values expected by the attributes affects the number
of lines an annotation spans. A Pearson correlation test on
the studied annotations (n=382,074) does indeed show a
statistically significant weak correlation between AA and LOA
metrics (r=0.18, p-value<2.2e-16).

Interestingly, the recommendation for annotation design-
ers to modularize their annotations and avoid a large num-
ber of attributes has been practiced in ACRA [36]. Note
that two annotations from this library, @ReportsCrashes
and @AcraCore, have extreme AA and LOA metric

values in our data. The documentation [38] shows that
the library evolved through ten versions, starting from
one annotation, @ReportsCrashes, to sixteen differ-
ent annotations. @ReportsCrashes had 41 attributes in
the initial version (4.5.0). However, in version 5.1.3, the
@ReportsCrashes annotation was removed and fifteen
new annotations were introduced, out of which seven annota-
tions, @AcraCore, @AcraHttpSender, @AcraDialog,
@AcraMailSender, @AcraLimiter, @AcraToast, and
@AcraNotification, directly resulted from the modular-
ization of the @ReportsCrashes annotation. While this
is an anecdotal example, it shows that annotation designers
realize the need for remodularization. By looking at our metric
results and data, annotation designers can find potential mod-
ularization and re-design opportunities for their annotations.

4) Discussion: The results of RQ1 show that there are
differences in annotation usage between Android apps and
general Java applications. In general, the density metrics
suggest that the density of annotations in Android apps is less
than that in Java projects. The seven other metrics in Table IV
showed similar trends, where the vast majority of threshold
values in Android were less than their Java counterpart.
However, our data reveals that despite Android apps generally
using less annotations, extreme annotation usage still exists.
In general, our new Android threshold values can help app
developers and annotation designers know the typical values
for these annotation metrics and discover potential problems
in their design, such as number of attributes. Similarly, app
developers can use these metric thresholds to know if their
annotation usage is different from typical usage.

Answer to RQ1: Annotation usage is pervasive in Android
apps (99.7%), but annotation density is notably less than in
general Java projects. This is also true for other metrics, but
we still found extreme cases of annotation usage.

B. RQ2: Which annotations are used in Android apps?
1) Motivation: So far, we have studied various metrics

related to annotation usage, but not the particular types of
annotations used. We want to understand if the types of
annotations used in Android apps is different than Java.
Understanding the annotation types used is also important for
practitioners. For example, the Android framework and third-
party library annotation designers can understand the adoption

6

TABLE V
TOP 10 FREQUENTLY USED ANNOTATIONS

Annotation Category Frequency (%)

@Override Java 257,578 (67.41%)
@NonNull Android 33,610 (8.80%)
@Test Library 17,476 (4.57%)
@Nullable Android 14,391 (3.77%)
@SuppressWarnings Java 6,830 (1.79%)
@BindView Library 4,589 (1.20%)
@SuppressLint Android 2,819 (0.74%)
@Inject Java 2,652 (0.69%)
@TargetApi Android 2,644 (0.69%)
@RunWith Library 1,447 (0.38%)

pattern of their annotations, which in turn can help them in
designing new annotations or cleaning up unused ones.

2) Method: We first differentiate Java annotations from
Android framework annotations. To do so, we categorize
annotations from packages starting with java or javax
as Java annotations and annotations from packages starting
with android, androidx, or com.android as Android
framework annotations. Additionally, to provide meaningful
insights to annotation developers about potential opportunities
for new annotations or for improving annotation adoption, we
further categorize the remaining annotations into third-party
libraries and custom annotations. We categorize annotations as
custom annotations if they are declared in the apps in which
they are used, and then categorize any remaining uncategorized
annotations as third-party libraries. We calculate the frequency
of each annotation found in our data set across all apps and
then determine the top 10 frequently used annotations.

3) Results: We find 845 unique annotations with 382,074
annotation usages. Among these, 539 annotations appear only
once in 539 different apps. Only 88 annotations are used in
more than 10 apps and only 12 annotations are used in more
than 100 apps. This suggests that only a small number of
annotations are frequently used across apps. We also find that
Java annotations constitute 71% of the total frequency of all
the annotations used in the studied apps. This is followed by
Android annotations at 17% and library annotations at 11%.
We find that using custom annotations is very rare, accounting
only for 1% of the total number of annotation usages.

Table V shows the top 10 most frequently used annotations
in our apps, with their corresponding category. The frequency
of these top 10 annotations constitutes 90% of the total
frequency of all the annotations used in our apps. Out of our
top 10 list, two Java annotations and one third-party library
annotation (@Override, @Test, @SupressWarnings)
have also been found as frequent Java annotations by Rocha
and Valente [18]. However, unlike their results, which also
found three different Java persistence annotations and four
different third-party library annotations, our results do not
show frequent use of these annotations. Instead, 4 of our
top 10 frequently used annotations are Android framework
annotations and 1 annotation (@BindView) is an Android-
specific third-party library annotation.

We now dive deeper into each annotation category. We start
with Java annotations. We find 31 unique Java annotations
that belong to 7 different packages. However, only 12 of

TABLE VI
JAVA ANNOTATIONS USED IN > 10 APPS

Package Name Annotations

java.lang @Override, @SuppressWarnings,
@Deprecated, @SafeVarargs

java.lang.annotation@Retention, @Target, @Documented
javax.inject @Inject, @Singleton, @Named,

@Qualifier, @Scope

TABLE VII
ANDROID FRAMEWORK ANNOTATIONS USED > 10 APPS

Package Name (android.) Annotations

support.annotation @NonNull, @Nullable, @StringRes,
@ColorInt, @IdRes, @DrawableRes,
@VisibleForTesting, @RequiresApi,
@ColorRes, @IntDef, @LayoutRes,
@WorkerThread, @Keep, @MainThread,
@UiThread, @AttrRes, @CallSuper,
@StyleRes, @IntRange, @StringDef,
@DimenRes, @CheckResult, @RawRes,
@XmlRes, @ArrayRes, @MenuRes

annotation @SuppressLint, @TargetApi
arch.persistence.room @Query, @ColumnInfo, @Ignore,

@Entity, @PrimaryKey, @Index,
@Insert, @Dao, @Database

support.test.filters @SmallTest, @LargeTest
test.suitebuilder.annotation @LargeTest
webkit @JavascriptInterface

these annotations, belonging to 3 different packages, have been
used in more than 10 apps. We show these annotations in
Table VI. We find that Java annotations are mainly used in
the apps to indicate overridden methods, suppress compiler
warnings, indicate deprecated methods, declare annotations,
and inject dependencies. Although previous results indicate
mostly similar usages of annotations in Java projects [18], one
notable difference we see is that unlike Java projects which
frequently use Java Persistence annotations for managing
databases, Android apps do not use these annotations.

Next, we analyze the Android framework annotations. We
find a total of 91 unique Android framework annotations
belonging to 16 different packages. However, only 41 of these
annotations are used in more than 10 apps. These 41 Android
framework annotations belong to 6 different packages, shown
in Table VII. Most of the frequently used Android framework
annotations belong to android.support.annotation
and android.annotation, and are used mainly for
checking null conditions, suppressing lint warnings, handling
OS fragmentation, validating resource types, and handling
threads. The remaining frequently used annotations are mainly
used for managing databases, testing, and exposing methods to
JavaScript. As the package names in Table VII show, Android
apps use annotations from various Android APIs and libraries
that are tailored to the mobile environment, such as annotations
from the Room library in place of Java persistence APIs.

Next, we analyze third-party library annotations. We find
a total of 184 unique annotations belonging to 34 annota-
tion libraries. Out of these, 13 different annotation libraries
containing 127 unique annotations are used in more than 10
apps. Table VIII shows these 13 annotation libraries. The first
column shows the package name of the library, the second
column shows the main purpose of the library, the third column
shows the number of the library’s unique annotations used in
our apps, the fourth column shows the total frequency of the
library’s annotations in our apps, and the last column shows

7

TABLE VIII
ANNOTATIONS FROM THIRD-PART LIBRARIES USED IN MORE THAN 10 APPS

Annotation Library Main Purpose Unique Annotations Total Frequency No. of Apps

org.junit, org.junit.runners Testing 17 21,561 362
butterknife Binding views 20 6,126 77
org.robolectric.annotation Testing 5 521 46
retrofit2.http Type-safe HTTP client 20 2,300 44
org.acra.annotation Reporting crashes 7 61 43
dagger Dependency injection 13 1,274 40
org.mockito Testing 4 1,138 33
com.google.gson.annotations Serializing/deserializing Java objects to/from JSON 3 1,066 33
org.greenrobot.eventbus,
org.greenrobot.greendao.annotation

Components communication, mapping objects to
SQLite

8 495 30

com.fasterxml.jackson.annotation JSON processor 17 1,412 27
org.jetbrains.annotations Code inspection (null check) 6 372 25
org.powermock Testing 3 54 13
com.bumptech.glide.annotation Media management and image loading 4 17 13

the number of apps that use annotations from the library.
Although third-party annotations constitute only 11% of the
total frequency of all annotations used in the apps, Table VIII
shows that some of the annotation libraries are used in a
large number of apps. For example, annotations from the
JUnit and butterknife library appear in 362 and 77 different
apps, respectively. In Table V, we also see that the @Test
and @RunWith annotations from JUnit and the @BindView
annotation from butterknife are among the top 10 frequently
used annotations. Given the purpose of each annotation library
shown in Table VIII, we can conclude that app developers use
annotation libraries mainly for testing, binding views, injecting
dependencies, and processing JSON and XML data.

Finally, although we find 591 custom annotations declared
in 107 apps, only 504 of them (representing 60% of total
unique annotations) are used. However, the frequency of the
custom annotations used in the studied apps is rare. They only
constitute 1% of the total frequency of used annotations. RQ3
studies the purpose of these custom annotations.

4) Discussion: Although Java and the Android framework
define hundreds of annotations, only a few of these annotations
are frequently used in Android apps. For example, the 10
annotations listed in Table V constitute over 90% of the total
frequency of all the annotations used in the studied apps.
Moreover, less than 50% of the unique Java annotations and
the unique Android framework annotations in our data set are
used in more than ten apps. This indicates a low adoption rate
for the majority of Java and Android framework annotations
we observe. Despite the low adoption rate, our results still
bring good news for Android framework annotation designers:
a large number of unique Android framework annotations are
used in the studied apps, which suggests that app developers
are looking beyond frequently used annotations. Tool support
that recommends relevant annotations to developers based on
their code could be one option to increase the adoption rate.

Our results also show that app developers use various third-
party annotation libraries. However, we note that the most
frequently used annotation libraries are either already popular
in Java projects, such as JUnit and Retrofit, or are endorsed in
the official Android developers’ website, such as Robolectric
and Dagger. Official endorsement may help in improving the
adoption rate of third-party annotation libraries.

Answer to RQ2: The adoption rate of most of the Java
and Android framework annotations, as well as custom
annotations, is very low. Except for a few testing and binding
views-related annotations, app developers rarely use third-
party library annotations.

C. RQ3: Why do developers declare their own annotations?

1) Motivation: RQ2 showed that there is a total of 591
custom annotations in our data, 504 of which get used. In this
RQ, our goal is to understand what app developers use these
custom annotations for. While the purpose of frequently used
built-in annotations can be found in official documentation
sources, it may not be clear to developers why they might
need to define a custom annotation [24]. There is currently,
to the best of our knowledge, no empirical studies of custom
annotations. Thus, results of RQ3 can help app developers in
understanding typical needs for custom annotations. Moreover,
annotation designers can design new annotations based on the
common reasons for creating custom annotations.

2) Method: First, we identify all the custom annotation
declarations in the studied apps. We then identify the custom
annotations that are used to customize the Java or Android
framework annotations by analyzing their meta-annotations.
For each meta-annotation of the custom annotations that are
not @Retention, @Target, or @Documented annotation,
we check the Java or Android framework documentation to
identify their purposes. Finally, to categorize and identify
the purpose of the custom annotations that are not used to
customize the Java or Android framework annotations, we
follow an open coding approach [39] as follows.

For each annotation, the first author first manually analyzed
the comments written by developers in the annotation decla-
ration as well as the code that declares the annotation and any
code that uses the annotation. The first author then wrote a
short descriptive phrase about the purpose of the annotation,
e.g., “Tagging a field to be validated for positive numeric
values”. The second author then independently repeated this
task and marked any annotations with which they disagreed
with the provided descriptions or for which the description was
empty and required discussion. In total, we had 14 entries
that required discussion. We do not measure an inter-rater
agreement, because we did not have pre-defined categories

8

or true/false labels. After the discussion and ensuring each
annotation has a descriptive phrase, both authors performed
card sorting together. They start by grouping annotations with
similar descriptive phrases and then iterate again to combine or
divide groups. Since existing studies [18]–[20] do not analyze
custom annotations, we do not compare results in this RQ.

3) Results: We find 591 custom annotation declarations in
107 apps. Among these, 87 annotations do not actually get
used at all. For example, the AndFHEM app [40] declares
8 custom annotations but only uses 1 of them in the code.
Therefore, we focus on the 504 custom annotation declarations
that do get used. Among the 504 custom annotation declara-
tions, we identify 454 custom annotation declarations (90%)
that are used to customize the Java or Android framework
annotations, which we refer to as Java/Android custom. We
find that 371 of those are used to declare a data type similar to
the enum data type in Java. These custom annotations are used
as interfaces for the @IntDef and @StringDef Android
framework annotations. The @IntDef and @StringDef
framework annotations denote that the value of the annotated
element should be one of the explicitly named integers or
string constants. These framework annotations are used as
meta-annotations of the custom annotations to create an effect
similar to Java’s enum. However, the custom annotations
created with @IntDef or @StringDef annotations have
a performance advantage over enum [41]. Listing 3 shows
a custom annotation declaration and use, taken from Sound-
Waves app [42]. The custom annotation @Action uses the
@StringDef annotation to create a data type that can have
five different string values. The use of the @Action annota-
tion on getAction() method then ensures that the method
returns one of the five string values. Among the remaining 83
Java/Android custom annotations, we find 57 qualifier annota-
tions and 26 scope annotations. Qualifier annotations are used
to distinguish different instances of objects of the same type,
whereas scope annotations are used to create custom scopes
within a program. These annotations use @Qualifier and
@Scope Java annotations as their meta-annotations to define
custom qualifiers and scopes, respectively.

The remaining 50 custom annotation declarations (10%) are
not used for customizing the Java or Android framework an-
notations. Based on our open coding of these annotations, we
identify six reasons for declaring the annotations as follows.
We find 14 annotations that are declared for data persistence,
such as specifying a table or column name or tagging a field
that can be writable. We also find 11 annotations that are
declared for testing, such as filtering test classes or package
containing test classes. For example, Listing 4 shows the
@TestScanPackage custom annotation from the Nextcloud
[43] app, which is used to identify packages containing
test suites. We also find 10 annotations that are declared
to distinguish program elements that are used for specific
purposes, such as identifying program elements that are used
by Java Native Interface (JNI) framework or indicating that
the program elements’ visibility can be made public to allow
API discoverability [25]. We find 7 annotations that are used

/ / a n n o t a t i o n d e c l a r a t i o n
@StringDef ({DOWNLOAD, DELETE , PLAY, NEW, FLATTR})
@Retent ion (R e t e n t i o n P o l i c y . SOURCE)
p u b l i c @ i n t e r f a c e Ac t i on {}
/ / a n n o t a t i o n use
@Action
p u b l i c S t r i n g g e t A c t i o n () { re turn a c t i o n ;}

Listing 3. Custom annotation declaration and use in SoundWaves app

for validating fields such as checking positive numeric values
or empty values or indicating a required field. We find 4
annotations used for modifying app run-time behavior, such as
adding navigation tabs or setting preference values. Finally, we
find 2 annotations that are declared for documenting developer
concerns or comments in the source code [4].

4) Discussion: Our results show that app developers de-
clare most of the custom annotations (90%) in the studied apps
for customizing the Java or Android framework annotations.
For example, 371 custom annotations declare @IntDef and
@StringDef Android framework annotations. They declare
only 50 custom annotations exclusively for their specific
needs. Interestingly, there are annotation libraries available
for the same purpose as the purpose used to declare some
of the custom annotations. For example, some of the custom
annotation declarations we find related to persistence exist in
libraries for Android such as Room [23]. In the future, it
would be interesting to ask developers why they choose to
declare their custom annotation versus use an existing library
that provides this annotation. On the other hand, we find cases
of custom annotations, such as identifying Java native code,
where there is no corresponding annotation library available.
This presents an opportunity for annotation library designers
to design new annotations.

Answer to RQ3: 90% of custom annotations are declared
to customize Java/Android annotations such as @IntDef,
@Qualifier, and @Scope. The remaining 10% are used
for data persistence, testing, distinguishing program elements,
validating fields, or modifying the app’s run-time behavior.

VI. ACTIONABLE IMPLICATIONS OF OUR RESULTS

We now discuss implications of our results for practitioners
(annotation designers and clients) and researchers.

a) Annotation Designers: Annotation designers need to
understand how annotations are used in practice in order to
improve their adoption and facilitate their usage. Our results
can help annotation designers in evaluating adoption patterns,
which in turn can help them in improving usage of the
annotations. By using our tooling or data set, annotation
designers can check which annotations are not used or rarely
used in practice and perform maintenance activities, such as
clean up unused annotations or improve documentation for the
unused annotations. For example, Android annotations such
as @InterpolatorRes, @RepetitiveTest, @Beta, or
@RequiresDevice have been used in only one app and the
@RepetitiveTest annotation has already been deprecated.

9

Annotation designers can also use our results on different
annotation frequency metrics, use our data set to find anno-
tation usage in practice, or apply our tooling on new data in
order to improve the design of new and existing annotations.
Moreover, our results on custom annotations present oppor-
tunities for annotation designers to create new annotations,
such as for identifying program elements that use Java Native
Interfaces (JNI). We also find that app developers declare
various custom annotations for data persistence, although a
library named Room [23] is available for data persistence
in Android apps. This presents an opportunity for annotation
designers to create new annotations or extend current ones.

b) Annotation Clients: RQ2 results can serve as a source
of information for annotations used in practice and their
popularity, which may help developers decide if certain an-
notations are relevant for them to use. Besides, our results
from RQ3 help in filling the information gap related to when
developers can/should create custom annotations [24]. Finally,
our results show that only a few Android annotations are
used frequently, and four Android annotations listed in the
top 10 most frequently used annotations (Table V) can be
either directly inferred and inserted by the Android Studio
(@Nullable and @NonNull) or indirectly inferred from
the Android Studio lint warnings (@SuppressLint and
@TargetApi). The results indicate that the usage of Android
annotations is significantly influenced by the annotation infer-
ence and placement abilities of the Android Studio. Therefore,
to increase usage of other annotations, tool and IDE builders
may consider providing support for automatically inferring and
recommending annotations to developers.

c) Researchers: Our results show that annotation usage
is different in Android apps from general Java applications.
Mobile apps have certain restrictions, such as size, and also use
different libraries that affect usage of programming language
features. Therefore, researchers performing studies on pro-
gramming language features may want to distinguish mobile
apps if the language is not exclusively used in the mobile
environment. Our results also raise new research questions
such as why developers create custom annotations, such as
for persistence, when there are existing libraries for them.

VII. THREATS TO VALIDITY

a) Construct validity: In RQ1 and RQ2, we compare
our findings to those by previous work on annotations in Java
projects. We note that the data set of 1,094 Java projects used
by Yu et al. [20] also contains Android apps. Specifically, we
analyzed their data set and found 217 Android apps. However,
we do not compare our findings only with Yu et al., but we
also compare them with two other papers on annotation usage
in Java projects [18], [19] whose data sets do not contain any
Android app. Given the differences we found across various
metrics, we can safely conclude that annotation usage in
Android apps has differences to annotation usage in Java apps.

b) Internal validity: We used various APIs of the Java-
Parser library [33] to collect data about annotation usage.
JavaParser is a widely used library; we also manually validated

/ / a n n o t a t i o n d e c l a r a t i o n f o r t e s t i n g i n N e x t c l o u d
@Retent ion (R e t e n t i o n P o l i c y . RUNTIME)
p u b l i c @ i n t e r f a c e T es tScan Package {

p u b l i c S t r i n g v a l u e () ;
}
/ / r e f l e c t i o n code f o r a n n o t a t i o n p r o c e s s i n g
Tes t ScanPack age a n n o t a t i o n =

c l a z z . g e t A n n o t a t i o n (Tes tScan Package . c l a s s) ;
i f (a n n o t a t i o n == n u l l) {

throw new I n i t i a l i z a t i o n E r r o r (“No package given ...) ;}
re turn a n n o t a t i o n . v a l u e () ;
Listing 4. Custom annotation taken from Nextcloud app and used for testing

some of the results to gain confidence in the tool. We did
not explicitly remove cloned apps; however, there were only
11 cloned apps in our data set, with many modifications to
the source code. Although we filtered inactive apps, some
of the studied apps might have become inactive since we
downloaded the apps. In RQ3, we manually analyzed some
of the collected data to understand the purposes of declaring
and using annotations. In the absence of comments, both
authors had to use their best judgement based on the provided
code. Manual tasks are subject to mistakes, and we may have
misinterpreted the purpose of some annotations. We release
all the artifacts used in this study for further validation [22].

c) External validity: Given that we need to analyze
source code to understand the purposes of annotation declara-
tion and usage, we limited our work to open-source apps. To
find such apps, we used all the apps from F-Droid [29], which
has also been extensively used in previous work [44]–[47]. We
further limited our study to the apps hosted on GitHub to filter
inactive apps. As a result, we analyzed annotation usage only
in 1,141 apps, which is a small number of apps in comparison
to millions of apps available in Google Play [48]. Although
the results of this study might not generalize beyond the apps
that we studied, 57% of the studied apps are also available in
Google Play, indicating that these are real apps. Moreover, our
data set is much larger than previous annotation studies [18],
[19], and the descriptive statistics of the studied apps in Table I
suggest that we cover a wide variety of apps.

VIII. CONCLUSION

In this paper, we performed an empirical study to understand
annotation usage in Android apps and whether it is different
from general Java projects. We investigated three research
questions: annotation distribution at various granularity levels,
usage of different types of annotations and their adoption
frequency, and purpose of custom annotations. Our study
generates various findings about annotation distribution, types,
adoption, and declaration in Android apps, which can help
app developers and annotation designers in improving the
usage of annotations in Android apps. For example, designers
can improve the annotation usage by designing annotations
needed by developers, adjusting the design of new and existing
annotations, and cleaning up unused annotations.

ACKNOWLEDGMENT

This research was undertaken thanks to funding from the
Canada Research Chairs program.

10

REFERENCES

[1] Oracle, “Java annotations,” https://docs.oracle.com/javase/tutorial/java/
annotations/, 2020.

[2] L. Tan, Y. Zhou, and Y. Padioleau, “acomment: mining annotations
from comments and code to detect interrupt related concurrency bugs,”
in Proceedings of the 2011 33rd International Conference on Software
Engineering (ICSE). IEEE, 2011, pp. 11–20.

[3] M. Eichberg, T. Schäfer, and M. Mezini, “Using annotations to check
structural properties of classes,” in Proceedings of the 8th Interna-
tional Conference on Fundamental Approaches to Software Engineering.
Springer, 2005, pp. 237–252.

[4] M. Sulı́r, M. Nosál’, and J. Porubän, “Recording concerns in source
code using annotations,” Computer Languages, Systems & Structures,
vol. 46, pp. 44–65, 2016.

[5] H. Zhang, Z. Chu, B. C. d. S. Oliveira, and T. v. d. Storm, “Scrap
your boilerplate with object algebras,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2015, pp. 127–146.

[6] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden,
“An empirical study on the impact of c++ lambdas and programmer
experience,” in Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 760–771.

[7] C. Parnin, C. Bird, and E. Murphy-Hill, “Adoption and use of java
generics,” Empirical Software Engineering, vol. 18, no. 6, pp. 1047–
1089, 2013.

[8] G. B. de Pádua and W. Shang, “Revisiting exception handling practices
with exception flow analysis,” in Proceedings of the 17th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2017, pp. 11–20.

[9] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions
of ast nodes to study actual and potential usage of java language fea-
tures,” in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 779–790.

[10] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of programming
language adoption,” in Proceedings of the 2013 ACM SIGPLAN inter-
national conference on Object oriented programming systems languages
& applications, 2013, pp. 1–18.

[11] B. G. Mateus and M. Martinez, “On the adoption, usage and evo-
lution of kotlin features on android development,” arXiv preprint
arXiv:1907.09003, 2019.

[12] A. Warski, “The case against annotation,” https://www.yegor256.com/
2016/04/12/java-annotations-are-evil.html, 2016.

[13] Y. Bugayenko, “Java annotations are a big mistake,” https://blog.
softwaremill.com/the-case-against-annotations-4b2fb170ed67, 2017.

[14] Stack Overflow, “Xml configuration versus annotation based
configuration,” https://stackoverflow.com/questions/182393/
xml-configuration-versus-annotation-based-configuration, 2008.

[15] Technical Jungle, “Annotations and its benefits in java,” http:
//technicaljungle.com/annotations-in-java-intro-benefits-avoidance/,
2020.

[16] Stack Overflow, “Arguments against annotations,” https://stackoverflow.
com/questions/1675610/arguments-against-annotations, 2009.

[17] G. Riegler, “Be a better developer,” http://www.beabetterdeveloper.com/
2013/12/an-annotation-nightmare.html, 2013.

[18] H. Rocha and M. T. Valente, “How annotations are used in java: An
empirical study.” in Proceedings of the 23rd International Conference
on Software Engineering and Knowledge Engineering (SEKE), 2011,
pp. 426–431.

[19] P. Lima, E. Guerra, P. Meirelles, L. Kanashiro, H. Silva, and F. F.
Silveira, “A metrics suite for code annotation assessment,” Journal of
Systems and Software, vol. 137, pp. 163–183, 2018.

[20] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, “Characterizing the
usage, evolution and impact of java annotations in practice,” IEEE
Transactions on Software Engineering, 2019.

[21] Android Developers, “Android annotations,” https://developer.android.
com/reference/androidx/annotation/package-summary, 2020.

[22] —, “Data set: Annotation practices in android apps.” https://figshare.
com/articles/dataset/Annotation practices in Android apps/12782468,
2020.

[23] Android Developers, “The room persistence library,” https://developer.
android.com/jetpack/androidx/releases/room, 2020.

[24] Stack Overflow, “Use of custom annotations,” https://stackoverflow.com/
questions/31103302/use-of-custom-annotations, 2015.

[25] A. L. Santos and B. A. Myers, “Design annotations to improve api
discoverability,” Journal of Systems and Software, vol. 126, pp. 17–33,
2017.

[26] P. Pinheiro, J. C. Viana, M. Ribeiro, L. Fernandes, F. Ferrari, R. Gheyi,
and B. Fonseca, “Mutating code annotations: An empirical evaluation
on java and c# programs,” Science of Computer Programming, vol. 191,
p. 102418, 2020.

[27] I. Córdoba-Sánchez and J. de Lara, “Ann: A domain-specific language
for the effective design and validation of java annotations,” Computer
Languages, Systems & Structures, vol. 45, pp. 164–190, 2016.

[28] I. Darwin, “Annabot: A static verifier for java annotation usage,”
Advances in Software Engineering, vol. 2010, 2010.

[29] F-Droid, “Free and open source android app repository,” https://f-droid.
org/, 2020.

[30] Oracle, “Annotation processing tool (apt),” https://docs.oracle.com/
javase/7/docs/technotes/guides/apt/GettingStarted.html, 2020.

[31] P. Lima, “Annotation sniffer,” https://github.com/phillima/asniffer, 2018.
[32] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,

“Spoon: A library for implementing analyses and transformations of
java source code,” Software: Practice and Experience, vol. 46, no. 9,
pp. 1155–1179, 2016.

[33] JavaParser, “Parser and abstract syntax tree for java,” https://github.com/
javaparser/javaparser, 2020.

[34] Guava, “Google core libraries for java,” https://github.com/google/guava,
2020.

[35] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 546–558,
2009.

[36] ACRA, “A library enabling android applications to automatically post
their crash reports to a report server.” https://github.com/ACRA/acra,
2020.

[37] Google Web Toolkit, “A development toolkit for building and op-
timizing complex browser-based applications.” http://www.gwtproject.
org/overview.html, 2020.

[38] ACRA, “Javadoc acra.” http://www.acra.ch/javadoc/, 2020.
[39] C. B. Seaman, “Qualitative methods in empirical studies of software

engineering,” IEEE Transactions on software engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[40] andFHEM App, “An application to control devices using an fhem home
automation server.” https://github.com/klassm/andFHEM, 2020.

[41] W. Karim, “Intdef and stringdef in android,” https://wajahatkarim.com/
2018/05/intdef-and-stringdef-in-android/, 2018.

[42] A. P. L. Böttiger, “Soundwaves podcast player.” https://play.google.com/
store/apps/details?id=org.bottiger.podcast, 2020.

[43] Nextcloud App, “The android client for nextcloud.” https://github.com/
nextcloud/android, 2020.

[44] Y. Zeng, J. Chen, W. Shang, and T.-H. P. Chen, “Studying the charac-
teristics of logging practices in mobile apps: a case study on f-droid,”
Empirical Software Engineering, vol. 24, no. 6, pp. 3394–3434, 2019.

[45] M. Nayebi, H. Farrahi, and G. Ruhe, “Analysis of marketed versus not-
marketed mobile app releases,” in Proceedings of the 4th International
Workshop on Release Engineering, 2016, pp. 1–4.

[46] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo, “Why reinventing the
wheels? an empirical study on library reuse and re-implementation,”
Empirical Software Engineering, vol. 25, no. 1, pp. 755–789, 2020.

[47] R. Coppola, L. Ardito, and M. Torchiano, “Characterizing the transition
to kotlin of android apps: a study on f-droid, play store, and github,” in
Proceedings of the 3rd ACM SIGSOFT International Workshop on App
Market Analytics, 2019, pp. 8–14.

[48] Statista, “Number of app in google play store,” https://www.statista.
com/statistics/276623/number-of-apps-available-in-leading-app-stores/,
2020.

11

https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/
https://www.yegor256.com/2016/04/12/java-annotations-are-evil.html
https://www.yegor256.com/2016/04/12/java-annotations-are-evil.html
https://blog.softwaremill.com/the-case-against-annotations-4b2fb170ed67
https://blog.softwaremill.com/the-case-against-annotations-4b2fb170ed67
https://stackoverflow.com/questions/182393/xml-configuration-versus-annotation-based-configuration
https://stackoverflow.com/questions/182393/xml-configuration-versus-annotation-based-configuration
http://technicaljungle.com/annotations-in-java-intro-benefits-avoidance/
http://technicaljungle.com/annotations-in-java-intro-benefits-avoidance/
https://stackoverflow.com/questions/1675610/arguments-against-annotations
https://stackoverflow.com/questions/1675610/arguments-against-annotations
http://www.beabetterdeveloper.com/2013/12/an-annotation-nightmare.html
http://www.beabetterdeveloper.com/2013/12/an-annotation-nightmare.html
https://developer.android.com/reference/androidx/annotation/package-summary
https://developer.android.com/reference/androidx/annotation/package-summary
https://figshare.com/articles/dataset/Annotation_practices_in_Android_apps/12782468
https://figshare.com/articles/dataset/Annotation_practices_in_Android_apps/12782468
https://developer.android.com/jetpack/androidx/releases/room
https://developer.android.com/jetpack/androidx/releases/room
https://stackoverflow.com/questions/31103302/use-of-custom-annotations
https://stackoverflow.com/questions/31103302/use-of-custom-annotations
https://f-droid.org/
https://f-droid.org/
https://docs.oracle.com/javase/7/docs/technotes/guides/apt/GettingStarted.html
https://docs.oracle.com/javase/7/docs/technotes/guides/apt/GettingStarted.html
https://github.com/phillima/asniffer
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://github.com/google/guava
https://github.com/ACRA/acra
http://www.gwtproject.org/overview.html
http://www.gwtproject.org/overview.html
http://www.acra.ch/javadoc/
https://github.com/klassm/andFHEM
https://wajahatkarim.com/2018/05/intdef-and-stringdef-in-android/
https://wajahatkarim.com/2018/05/intdef-and-stringdef-in-android/
https://play.google.com/store/apps/details?id=org.bottiger.podcast
https://play.google.com/store/apps/details?id=org.bottiger.podcast
https://github.com/nextcloud/android
https://github.com/nextcloud/android
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

	Introduction
	Background
	Related Work
	Data Set Curation
	Study Subjects
	Extracting Annotations

	Annotation Usage in Android Apps
	RQ1: What is the distribution of annotation usage in Android apps?
	Motivation
	Method
	Results
	Discussion

	RQ2: Which annotations are used in Android apps?
	Motivation
	Method
	Results
	Discussion

	RQ3: Why do developers declare their own annotations?
	Motivation
	Method
	Results
	Discussion

	Actionable Implications of Our Results
	Threats to Validity
	Conclusion
	References

