
Migrating Unit Tests Across Java Applications
Ajay Kumar Jha

North Dakota State University
Fargo, USA

ajay.jha.1@ndsu.edu

Sarah Nadi
New York University Abu Dhabi and University of Alberta

Abu Dhabi, United Arab Emirates
sarah.nadi@nyu.edu

Abstract—Writing effective unit tests is often tedious, difficult,
and time-consuming. Test recommendation techniques facilitate
this process by recommending existing manually written tests
from other similar systems for developers to reuse. However,
developers still have to put non-trivial effort into modifying the
recommended tests. For example, they have to understand vari-
ous code elements in the recommended tests to accurately replace
them with semantically similar code elements from the target
system. In this paper, we propose JTESTMIGRATOR, a technique
to automatically migrate unit tests between semantically similar
methods across applications. Given a source and a target method
with similar functionality across applications, where the source
method has some unit tests, JTESTMIGRATOR migrates unit
tests by transforming the test code. JTESTMIGRATOR uses
semantic similarity and type compatibility of code elements in the
source and target systems to transform test code. We implement
JTESTMIGRATOR to migrate JUnit tests and evaluate it on 104
tests for 42 methods across 5 popular libraries. JTESTMIGRATOR
successfully migrates 76 (73%) of the tests for 32 (76%) of the
methods across the 5 libraries. 10 (13%) of the successfully
migrated tests increase the code coverage of 4 target methods.

Index Terms—unit testing, test reuse, test migration, code
transformation

I. INTRODUCTION

Unit testing is one of the popular forms of testing [1], [2].
Unit tests have several advantages: assuring that the system
under test (SUT) works as intended [3], improving developers’
confidence in changing the code of the SUT [4], [5], reducing
bug-fixing costs by detecting bugs earlier [5]–[8], and acting
as documentation [5], [9]. Despite these advantages, some
developers still do not write unit tests due to, for example,
time pressure and a lack of recognition from management [10],
[11]. Additionally, writing effective unit tests can take a
significant amount of time [10], which can reduce developers’
productivity [4], [10] and increase development costs [8].

Test-generation tools, such as Randoop [12], JCrasher [13],
and EvoSuite [14], help developers create tests. These tools use
a random or search-based approach to generate tests. However,
these techniques still struggle to generate effective test inputs
and oracles [15]–[17], which are key components of unit tests.
Another major shortcoming of generated tests is their poor
readability [15], [18], [19], which can create maintenance is-
sues down the line [10], [20]. These shortcomings result in the
limited adoption of test generation techniques in practice [21].
On the other hand, studies show that manually written tests are
more readable and have effective inputs and oracles [15], [18].
Thus, reusing manually written tests can potentially mitigate
some of the problems of automated test generation techniques.

One way to reuse existing tests is to find semantically simi-
lar functionality in a different software system and recommend
the associated tests to developers for reuse [22]–[24]. The
developers can then manually adapt these recommended tests
and integrate them into their applications. Sondhi et al. [22]
found that test inputs and oracles in unit tests can be reused
with some adaptations such as converting data types. This
implies that developers might still have to spend a non-trivial
amount of time in manually reusing the recommended tests.

Manual test reuse might actually take more time than writ-
ing new tests because developers have to understand different
code elements in the tests that need to be replaced with
semantically similar code elements from a target application.
For example, a test might contain various class constructors
and method invocations; developers need to understand the
functionality of such invocations in order to replace them
correctly. Makady and Walker [25] performed an experiment
of manual test reuse and found all the participants either gave
up before their test reuse task was complete or hit the time
limit. The experiment was conducted on the modified version
of the same application. Test reuse in different applications
might be even more challenging in terms of the effort required
to find and replace similar code elements. Therefore, a tool
that can automatically transform test code elements might help
developers reduce the effort needed to reuse tests [26], [27].

Reusing tests by automatically transforming test code is,
however, a non-trivial task due to various challenges involved
in test code transformation [26], [28], such as finding similar
software components, adjusting data types, and adjusting in-
puts according to different number and order of parameters.
Researchers have proposed semi-automated tools to transform
test code for test reuse [25], [26]. However, the proposed
approaches still require prerequisite manual effort in creating
test templates [26] or making a test reuse plan [25]. The
applicability of the approaches is also limited in terms of
the considered types of assertions, code transformations, and
target systems. For example, the Metallicus tool proposed
by Sondhi et al. [26] populates test templates provided by
users with only assertEquals assertions. Moreover, the
tools and datasets of the approach proposed by Makady and
Walker [25] are not publicly available.

In this paper, we propose JTESTMIGRATOR, a technique
and tool that automatically transforms various test code ele-
ments for test reuse. Given a source and a target method with
similar functionality across applications, JTESTMIGRATOR
uses a traceability technique to identify tests for the source
method, migrates the identified tests to the target applica-

JTestMigTax

 Add 2

 Remove

 Replace Type (variable)

Method Call

Constructor with
Method Call

Constructor with
Constructor and

Method Call

Other

one-to-one

one-to-many

many-to-one

 Change
Argument/Input

Assertion -
expected value

Modify value/type

Add

Remove

Statement

Constructor

Assertion

Method Call

TypeOther

510

490

304

258

2

319

369

30

131

10

216

154

258

262

288

93

30

106

58

21

38

135

82

Constructor

226

Fig. 1: JTESTMIGTAX, a taxonomy of migration-related code
changes [28]. JTESTMIGRATOR supports the green-colored
code changes.

tion, and systematically replaces the code in the migrated
tests with semantic similar code from the target application.
JTESTMIGRATOR automatically reuses manually written tests
across similar applications by eliminating the manual effort
required in code transformation. We evaluate the effectiveness
of JTESTMIGRATOR by migrating 104 JUnit tests for 42
methods across 5 popular JSON and common utility libraries
from JTESTMIGBENCH, a dataset of manually reused JUnit
tests [28]. JTESTMIGRATOR successfully migrates 76 (73%)
of the tests for 32 of the methods across the 5 libraries. The
76 migrated tests are passing tests and they can be directly
used in the target libraries to test target methods. 13% of
the successfully migrated tests increase the code coverage
of 4 target methods, showing some practical values of the
test migration concept. Moreover, 87% of the successfully
migrated tests are exactly the same as the corresponding
human migrated tests in JTESTMIGBENCH, which shows
JTESTMIGRATOR could have saved human effort.

Our implementation, data, and results are available on our
artifact page [29].

II. BACKGROUND

JTESTMIGRATOR is inspired by observations of our previ-
ous study that identify code transformation types necessary to
migrate JUnit tests across applications [28]. We next describe
the details of this previous study and a motivating example.

A. Types of Code Transformations in Unit Test Migration

To identify the types of code transformations required to
successfully migrate JUnit tests across applications, we first
created JTESTMIGBENCH, a benchmark of 510 manually
migrated JUnit tests for 186 methods from 5 popular libraries.
We then analyzed the code changes in the migrated tests to
create JTESTMIGTAX, a taxonomy of test code transformation
patterns, shown in Figure 1.

The taxonomy shows that potential unit test migration
techniques mainly need capabilities to replace, change, and
remove various types of program elements in the test code.
Specifically, they need to replace types, constructors, and
method calls, change method arguments and expected outputs,

and remove types, constructors, method calls, and assertions
that are not needed. The taxonomy also shows the frequency
of these actions in JTESTMIGBENCH. For example, 319 tests
out of 510 migrated tests required type replacement.

Our approach in Section III is inspired by the above ob-
servations. JTESTMIGRATOR supports the code changes from
JTESTMIGTAX that are highlighted in green in Figure 1.

B. Motivating Example

Figure 2a shows class JsonWriter from gson [30]. The
class declares method value to write a value to a JSON
array. Figure 2c shows the corresponding JUnit test class,
JsonWriterTest. Figure 2b shows class JSONWriter,
from a different library fastjson [31], which declares method
writeValue to write a value to a JSON array.

Writing effective unit tests, similar to the one shown in
Figure 2c, is often a tedious, difficult, and resource-consuming
task for developers [12]. The test in Figure 2c uses different
inputs to exercise the value method and checks actual output
against a structured expected output. Developers find that
determining oracles and finding relevant inputs are some of
the most difficult tasks [10]. Given the common functionality
between methods value and writeValue, a tool that can
automatically migrate the test shown in Figure 2c to fastjson in
order to test writeValue can save developers valuable time.
The migrated test can also improve developers’ confidence in
asserting the intended behavior of the method [5], [32].

JTESTMIGRATOR can automatically migrate unit tests be-
tween applications with similar functionality. Figure 2d shows
the test class that JTESTMIGRATOR produces for method
writeValue from Figure 2b, by migrating the original
test testDoubles from gson, shown in Figure 2c. In the
process, JTESTMIGRATOR finds and replaces semantically
similar methods (e.g., beginArray → startArray) and
types (e.g., JsonWriter → JSONWriter).

III. APPROACH

Figure 3 shows a high-level overview of our approach.
JTESTMIGRATOR takes two inputs: (1) a source applica-
tion, which is an application that already contains tests and
(2) a target application, which is an application that we
want to add tests for. Specifically, for the target application,
JTESTMIGRATOR takes the name of the method that needs
to be tested (target method) and the name of the class that
declares the method (target class). The target method and
target class for our motivating example are writeValue
and JSONWriter, respectively. For the source application,
JTESTMIGRATOR takes the name of the method that performs
the same function as the target method (source method), the
name of the class that declares the method (source class), and
the name of the test class that tests the method (source test
class). The source method, source class, and source test class
for our motivating example are value, JsonWriter, and
JsonWriterTest, respectively. JTESTMIGRATOR option-
ally takes the name of the test(s) from the source test class that
needs to be migrated, which is testDoubles for our motivating

(a) Source class from gson, with a method to write a
value to a JSON array

(b) Target class from fastjson, with a method to write a
value to a JSON array

(c) Source test class for testing gson’s value (d) Migrated test class to test fastjson’s writeValue

Fig. 2: An example of JTESTMIGRATOR migrating tests from gson to fastjson. Given the value method in Figure 2a and its
semantically similar method writeValue in Figure 2b, JTESTMIGRATOR migrates the original tests in Figure 2c to fastjson
as shown in Figure 2d.
example. JTESTMIGRATOR can take the above inputs directly
from unit test recommendation techniques without any manual
intervention. We envision test recommendation techniques
using JTESTMIGRATOR for test code transformation.

Given the above input, JTESTMIGRATOR performs test
migration. We divide the test migration task into the following
four subtasks. (1) Test traceability - identifying unit tests for a
method such as testDoubles for value in our example.
We use multiple heuristics to establish traceability. (2) Similar
code identification - identifying semantically similar code
elements in two different applications such as beginArray
and startArray. We use an approach that combines word
embeddings, text similarity, and type similarity for this task.
(3) Code transformation - replacing code elements from a
source application used in tests under migration (TUM) with
semantically similar code elements from a target application
while preserving the semantics of the test code. We use a
systematic code replacement approach that considers semantic
similarity and type compatibility of the code elements used in
TUM. (4) Test input and oracle reuse - reusing test inputs
and oracles in TUM to test a target method. We mainly use a
search-based approach guided by types to solve this problem.
We now explain each of the above subtasks/steps in detail.

A. Setup and Copy Tests
JTESTMIGRATOR currently supports two popular build

systems, Gradle [33] and Maven [34], both of which sup-
port a similar project structure that JTESTMIGRATOR lever-

ages. If the target application does not contain a test di-
rectory, JTESTMIGRATOR first creates this test directory
(src/test/java). It then creates a package directory struc-
ture that corresponds to the target class’ package structure and
copies the source test class to this new directory. We refer to
this copied source test class as target test class. Once JTEST-
MIGRATOR creates this initial version of the target test class,
it then resolves library dependencies in the target application.
JTESTMIGRATOR parses the dependency file (build.gradle or
pom.xml) of both source and target applications and import
statements of the target test class. It adds all the dependencies
used by the target test class to the target application if the
target application does not already contain these dependencies.

B. Trace Tests
The target test class may contain several tests to test various

methods from the source class/application. However, we need
only those tests that are testing the source method, value in
our example. JTESTMIGRATOR uses two different criteria to
check whether a test tests the source method: (1) whether the
name of the test contains the name of the input source method
and the test invokes the input source method and (2) whether
the test invokes the input source method. JTESTMIGRATOR
uses the second criteria only if the first criteria does not return
any test. It then removes all other tests from the target test
class. JTESTMIGRATOR skips this step if its input includes the
tests that need to be migrated (e.g., tests already recommended
by test recommendation techniques).

JTestMigrator

Trace Tests Find Similar
Code Elements

Transform
Test Code

Reuse Test
Input & Oracles

Source App
with Tests

Target App

Test Migration
Succeeded

Test Migration
Failed

Fig. 3: High-level overview of JTESTMIGRATOR.

C. Find Similar Code Elements

At this point, we know which tests we need to migrate.
Before we attempt to transform the code elements used in these
tests, we first need to find semantically similar code elements
in the target application. A test is basically a sequence of
method invocations and constructor calls [12]. JTESTMIGTAX
shows that a potential test migration technique needs to replace
methods, constructors, and types [28]. Therefore, JTESTMI-
GRATOR finds a semantically similar target method/type for
each source method/type used in the tests.

To determine the semantic similarity of methods, we con-
sider both method name and parameter similarity as follows.
We use SMFINDER [28] to determine method name similarity
nameSim. SMFINDER leverages a Word2Vec [35] model gen-
erated from the method signatures present in the Java classes of
29,271 Android applications from AndroZooOpen [36]. Given
a method pair, e.g., writeValue and writeNumber, SMFINDER
first splits the methods by camel case: {write value}, {write,
number}. For each word in the source method, it then uses
cosine similarity to identify the best matching word in the
target method: {write, write} and {value, number}. It then
computes nameSim by taking the average of the cosine
similarity scores of the best matching words: (cosine(write,
write)+cosine(value, number))/2). The name similarity score
nameSim ranges from 0 to 1.

SMFINDER only considers name similarity. However, a
source or target application could have multiple similar or
same-named methods (e.g., overloaded methods). Therefore,
we also consider parameter similarity. We calculate parameter
similarity paramSim, ranging from 0 to 1, as follows. Given
two methods, paramSim is 0 if both methods do not have
the same number of parameters and 1 if both methods have
no parameters. Otherwise, we first calculate a type similarity
value, typeSim, for each type pair formed by taking parameter
types positioned at the same place in both methods. The
typeSim value is 0 if types do not exactly match, 1 if they
exactly match, and Wc < 1 if they are compatible (i.e., can be
transformed to another type in the pair). To determine compat-
ible types, we create a predefined database that contains a list
of compatible source/target types for commonly used types.
The database currently has type information for commonly
used file handling types, primitive types, generics, and some
other Java types, shown in Table I. We calculate paramSim as
the average of typeSim values.

The final similarity score Msim is a weighted sum of
nameSim and paramSim. Specifically, Msim = nameSim ∗
Wn + paramSim ∗Wp, where Wn and Wp are weights for

TABLE I: Database of convertible data types

Given Type Compatible Types

File FileInputStream, FileOutputStream, BufferedInput-
Stream, BufferedOutputStream, ReadableByteChan-
nel, WritableByteChannel, String

Java primitive Object, Corresponding Java wrapper classes
Java wrapper Corresponding Java primitive
Reference types Object, Java generics
Number Direct subclasses of Number
Writer Direct subclasses of Writer

name and parameter similarity, respectively.
For each method used in the target test class, JTESTMI-

GRATOR selects a semantically similar method from the target
application based on the highest Msim. However, it is possible
that more than one method has the same highest similarity
score. In such cases, JTESTMIGRATOR leverages Levenshtein
distance [37] to resolve the conflict and select a semantically
similar method. For each semantically similar method pair
JTESTMIGRATOR detects, it considers the enclosing classes
as semantically similar types. For the remaining types used in
the tests, JTESTMIGRATOR finds their semantic equivalent by
using only name similarity nameSim between the class names.

D. Transform Test Code

Now that we have determined the method/type similarity
between the source and target application, JTESTMIGRATOR
replaces/modifies code elements of the target test class in order
to prepare it for being able to invoke the target method.

1) Code Transformation: JTESTMIGRATOR first finds and
replaces all instances of the input source-method invocation in
the target test class with an invocation of the target method.
For example, JTESTMIGRATOR replaces the method invoca-
tions jsonWriter.value(...) from Figure 2c with the
method invocations jsonWriter.writeValue(...) in
Figure 2d while keeping the same arguments. We discuss
replacing the arguments in Section III-E. JTESTMIGRATOR
checks exceptions thrown by the target method and adds the
thrown exceptions to the test method if they are not already
present in the test method.

At this point, the target test class still has constructor calls
of the source class, which need to be replaced with target-
class constructor calls. Assume that Ts and Tt are reference
data types representing the source and target class, respec-
tively. For our motivating example, Ts and Tt correspond
to JsonWriter and JSONWriter, respectively. For each
variable or field declaration of type Ts in the target test class,
JTESTMIGRATOR replaces the variable or field’s type with
Tt. For example, JTESTMIGRATOR transforms the variable

declaration JsonWriter jsonWriter (Figure 2c, Line
4) to JSONWriter jsonWriter (Figure 2d, Line 4). For
each object of type Ts, JTESTMIGRATOR replaces the object’s
type with the type Tt without modifying the constructor
arguments. For example, JTESTMIGRATOR transforms the
object new JsonWriter(...) (Figure 2c, Line 4) to new
JSONWriter(...) (Figure 2d, Line 4). We discuss replac-
ing constructor arguments in Section III-E. JTESTMIGRATOR
also takes subclass information into account by replacing
any instances of types Ts−sub with Tt. In cases where the
constructor of type Tt is private and therefore cannot be
used, JTESTMIGRATOR searches for a static method in the
target class that returns an object of type Tt and replaces the
constructor calls of type Ts in the target test class with calls
to this static method. If both the source and target methods
are static, JTESTMIGRATOR directly replaces Ts with Tt

as the target-method call receiver. If only the source method
is static, JTESTMIGRATOR creates an object of type Tt and
uses the object as the receiver of the target-method call.

JTESTMIGRATOR then finds and replaces any other meth-
ods from the source application that are being invoked in the
target test class. For our example in Figure 2c, such methods
are beginArray (Line 5), endArray (Line 15), and close (Line
16). We refer to these other invoked methods as helper source
methods. In addition to the input source method, the source
class, and helper source methods, JTESTMIGRATOR also re-
places all reference data types from the source application used
in the target test class. JTESTMIGRATOR replaces methods
and types using the similarity mapping dataset created in
Section III-C. It also adjusts the types of the variables that
store the values returned by the replaced method calls if the
return types of the replaced and original methods are different.

Although a test is mainly composed of method invocations
and constructor calls, the compilation of these code elements
also depends on various class-level code elements. Therefore,
JTESTMIGRATOR also transforms the dependent class-level
code elements. JTESTMIGRATOR replaces the package name
declared in the target test class (i.e., source package) with the
package name declared in the target class (i.e., target package).
Since the target test class originates from the source test class,
at this point, the target test class may have usages of static
fields declared in the source class. JTESTMIGRATOR adds
declarations for the used static fields in the target test class.

2) Test Resource Migration: The target test class might
use resources, such as files, and test helper classes to test
the input source method. JTESTMIGRATOR finds and locates
any resources used in the target test class, and copies these
resources from the source application directory to the tar-
get application directory. To migrate the test helper classes,
JTESTMIGRATOR finds the receivers of all the methods called
in the target test class. For each receiver, JTESTMIGRATOR
then checks whether the receiver’s class type matches with a
class name from the source application. If it does and the file
containing the class is in the source application test directory,
JTESTMIGRATOR copies this file to the target application
test directory. After copying the file, JTESTMIGRATOR also

performs code transformation on the helper class.
3) Test Code Cleanup: At this stage, the target test class

might have some code elements from the source application
that JTESTMIGRATOR could not replace. The target test class
might use some reference types or fields from the source
application that are not available in the target application.
JTESTMIGRATOR removes all the code elements that it could
not replace or are no longer required.

E. Reuse Test Input and Oracles

Test inputs and oracles are key elements of a test. Our goal is
to preserve manually written inputs and oracles while reusing
tests in the target application. Therefore, JTESTMIGRATOR
reuses the test inputs and oracles from the source application.
However, although JTESTMIGRATOR does not change the
test input values, it may not be possible to directly use the
test inputs due to differences in the number and types of
parameters between the source and target methods [22]. This
also reflects in JTESTMIGTAX in Figure 1, which shows that
input-related code changes in test migration involve modifying
arguments’ type or value, adding arguments, and removing
arguments. JTESTMIGRATOR supports all the input-related
code changes in JTESTMIGTAX except modifying arguments’
value. We discuss how JTESTMIGRATOR converts and infers
test inputs in Section III-E1 and generates test inputs that
cannot be inferred from the test inputs available in the target
test class in Section III-E2.

1) Test Input Transformation: JTESTMIGRATOR kept the
arguments of any replaced source program elements intact
during code transformation. Thus at this point, JTESTMIGRA-
TOR tries to infer test inputs for the transformed tests. For
each replaced constructor and method invocation, JTESTMI-
GRATOR checks whether the parameter types of the replaced
program element are the same as the parameter types of its
counterpart in the target application. If the parameter types are
the same, JTESTMIGRATOR does not change the arguments.
Otherwise, JTESTMIGRATOR changes the arguments of the
target program elements. The process to infer test inputs for
the target method and any helper target methods is the same.
Therefore, we only discuss the process for the target method.

Since fields from the target test class or local variables
from the current test method can be passed to the target-class
constructor or the target-method arguments, JTESTMIGRATOR
finds and stores all fields and local variables that are within
the scope as potential inputs for the target-class constructor
and target-method. However, some potential inputs may not
have the required types. JTESTMIGRATOR tries to convert
such potential inputs to the needed target types using the
convertible type database in Table I. For each potential input
value that does not have a direct match, JTESTMIGRATOR
searches the database to find alternative compatible types. If
one of the compatible types matches with a parameter type of
the target-class constructor or the target method, JTESTMI-
GRATOR keeps this potential input as an acceptable value for
the argument corresponding to the matched parameter type.

Otherwise, JTESTMIGRATOR removes this input from the list
of potential inputs for this argument.

Given the filtered list of potential inputs, JTESTMIGRATOR
attempts to convert their types to the expected argument
type if the Java compiler cannot perform an implicit con-
version. The database we created (Table I) also contains an
initialization pattern for each source and target type pair,
such as “.getAbsolutePath()” and “.getParent()”
patterns for converting an input of type File to String.
JTESTMIGRATOR uses these initialization patterns to convert
the types of potential inputs. For our example, although the
source and target methods have different parameter types (i.e.,
double and Object, Figure 2a and 2b), JTESTMIGRATOR
does not convert the input values used in the source test class
in Figure 2c because the Java compiler automatically does
that. JTESTMIGRATOR generates potential inputs for each
argument of the target-method invocation in a similar way.

2) Test Input Generation: JTESTMIGRATOR may not find
potential input types that can be convertible to some parameter
types of the target-class constructor or the target method. In
such cases, JTESTMIGRATOR instead attempts to generate
inputs for these parameters.

For each parameter for which JTESTMIGRATOR failed to
convert the available input types, it declares the parameter
as a field variable. It then uses two different approaches to
initialize the field based on its type: (1) If the declared field is
a Java primitive or String type, JTESTMIGRATOR generates
a random value and initializes the field with the random
value. (2) If the declared field is of a reference type from the
target application, JTESTMIGRATOR instantiates an object of
the reference type and initializes the field with this object.
JTESTMIGRATOR then infers input for the constructor of the
instantiated object by following the same approach as used to
infer input for the target-class constructor.

3) Test Input Selection: After test input transformation and
test input generation, JTESTMIGRATOR has a set of inputs
for each target-class constructor and target-method invocation.
Each input set is essentially a matrix of the parameter index
and potential input values for this parameter. JTESTMIGRA-
TOR then generates a cartesian product of the sets of inputs.
Each entry in the resulting set acts as a distinct input set for
the target-class constructors and target-method invocations.

JTESTMIGRATOR then uses a dynamic approach to select
test inputs. Specifically, JTESTMIGRATOR executes the target
test class with each distinct input set. For the first input set, if
the execution fails with compilation errors, JTESTMIGRATOR
stops executing the target test class with the other input sets
and indicates that the test cannot be migrated. The compilation
errors indicate that JTESTMIGRATOR could not successfully
transform the test code. Therefore, JTESTMIGRATOR does
not execute the target test class with the other input sets.
However, if there are no compilation errors, JTESTMIGRATOR
checks the results of the test execution. If the test passes,
JTESTMIGRATOR does not execute the test with the other
input sets and reports that the test migration is successful.
However, if the test fails, JTESTMIGRATOR keeps executing

the test with the other input sets, until the test passes or
JTESTMIGRATOR exhausts all the input sets. If the test does
not pass after exhausting all the input sets, JTESTMIGRATOR
keeps the last input set it tries and reports that the migration
failed.

IV. EVALUATION SETUP

To evaluate our approach, we implement JTESTMIGRATOR
and investigate the following research questions:
• RQ1: How many tests can JTESTMIGRATOR successfully

migrate? Successfully migrated tests are those that JTEST-
MIGRATOR correctly transforms into passing tests in the
target application. Successfully migrated tests demonstrate
JTESTMIGRATOR’s capability to automatically reuse tests.

• RQ2: How do JTESTMIGRATOR’s migrated tests compare
to human migrated tests? To provide additional qualitative
insights into the generated tests, we compare JTESTMIGRA-
TOR’s successfully migrated tests to the human migrated
tests in JTESTMIGBENCH.

• RQ3: How many of the JTESTMIGRATOR’s successfully
migrated tests are useful? We check whether JTESTMIGRA-
TOR’s successfully migrated tests improve the code coverage
of the target methods or applications.
To calculate a similarity score for methods, we use 0.5, 0.5,

and 0.6 values for Wn, Wp, and Wc, respectively, based on
our initial experiments.

A. Study Subjects

We evaluate JTESTMIGRATOR on JTESTMIGBENCH
dataset [28], which contains 510 manually migrated JUnit tests
for 186 methods from 5 popular libraries: JSON-java, gson,
fastjson, commons-lang, and guava. We use JTESTMIGTAX
to systematically select the data from JTESTMIGBENCH for
evaluating JTESTMIGRATOR. Figure 1 shows what types of
code changes JTESTMIGRATOR currently supports (in green)
and does not support (in red). For example, JTESTMIGRATOR
cannot support tests that involve replacing a source method
with multiple target methods (i.e., one-to-many) and vice versa
(i.e., many-to-one). Overall, we select only those unit tests and
their corresponding methods from JTESTMIGBENCH that do
not require the code changes highlighted in red in Figure 1,
as we already know that JTESTMIGRATOR does not support
these. This results in 104 unit tests for 45 method pairs from all
five libraries as shown in Table II. The method pairs have 42
unique target methods. Overall, we evaluate JTESTMIGRATOR
by attempting migration of 104 tests for 42 target methods.

V. EVALUATION RESULTS

A. RQ1: Successfully migrated tests

1) Method: If the inputs to JTESTMIGRATOR do not in-
clude which tests to migrate, it first identifies the tests to
migrate for the given source method. Otherwise, it migrates
the specified tests. For each method pair in Table II, we run
JTESTMIGRATOR twice. We first run JTESTMIGRATOR with-
out specifying tests and check how many of the corresponding

TABLE II: Study subjects
Source Library Target Library #Similar Method Pairs

(selected/total)
#JUnit tests

(selected/total)

JSON-java gson 1/27 1/70
gson JSON-java 3/10 4/15
JSON-java fastjson 4/30 4/100
fastjson JSON-java 6/36 9/59
gson fastjson 19/33 66/185
fastjson gson 1/30 1/47
commons-lang guava 3/10 9/20
guava commons-lang 8/10 10/14

Total - 45/186 104/510

tests from the last column of Table II does JTESTMIGRA-
TOR correctly identify and attempt to migrate. We next run
JTESTMIGRATOR by providing specific tests. In both setups,
we execute each migrated test that does not have compilation
errors. If the migrated test passes, we determine that the test
has been successfully reused in the target library. If the test
fails or has compilation errors, we compare the test with the
corresponding manually migrated test in JTESTMIGBENCH to
identify the reasons for unsuccessful migration.

2) Results: Table III shows the results for the 42 methods.
We first examine JTESTMIGRATOR’s ability to detect the
source tests that need to be migrated. Out of the 104 source
tests, JTESTMIGRATOR was able to successfully find 86 tests.
The tests JTESTMIGRATOR fails to identify are due to the
criteria it uses to identify tests in Section III-B. Given a
source method add and a source test class containing tests
testAdd and testNumbers that have at least one state-
ment that invokes the add, JTESTMIGRATOR will identify
only testAdd as a test for the add method using the
first criteria. Since the first criteria returns at least one test,
JTESTMIGRATOR does not use the second criteria, which
results in missing testNumbers as another test. However,
we found that using both criteria to identify tests results in
false positives, where the source method is only used as a
helper method, which is why we use this current design.

To focus on JTESTMIGRATOR’s migration abilities, we now
look at the results of running it while specifying the tests
to migrate (last two columns of Table III). JTESTMIGRATOR
successfully migrates 76 (73%) tests for 32 (76%) methods
across the 5 libraries. This means that JTESTMIGRATOR
enabled full automated reuse of 73% of tests.

Among the 28 tests that JTESTMIGRATOR could not suc-
cessfully migrate, 9 tests have compilation errors and 19 tests
failed. Table IV shows the reasons for unsuccessful migrations.
Note that there may be multiple reasons for unsuccessful
migrations in a test. JTESTMIGRATOR could not successfully
migrate 16 of the 28 tests because they require the types of
code transformations that it does not support. Specifically,
these tests require a method call addition, a change in an
expected output value, or a many-to-one method call replace-
ment. For example, 15 of the 16 tests migrated from gson
to fastjson for two methods require the addition of a close
method call, similar to line 16 shown in Figure 2d. However,
unlike the motivational example, the original tests in these
cases do not include a close method call. The 16 tests are

TABLE III: Successfully migrated tests
Source Library Target Library No Input Test With Input Tests

#Tests Identified #Passing Tests #Methods

JSON-java gson 1/1 1/1 1/1
gson JSON-java 4/4 2/4 2/3
JSON-java fastjson 3/4 1/4 1/4
fastjson JSON-java 9/9 9/9 6/6
gson fastjson 49/66 44/66 11/16
fastjson gson 1/1 1/1 1/1
commons-lang guava 9/9 9/9 3/3
guava commons-lang 10/10 9/10 7/8

Total - 86/104 76/104 32/42

TABLE IV: Reasons for unsuccessful migrations
Reasons #Tests

Total Compilation Errors Test Failures

Unsupported code transformation 16

Method call addition 4 11
Change in expected output values - 1
Many-to-one method call replacement 1 -

Supported code transformation 12

Incorrect similar method replacement 2 7
Incorrect type conversion 2 1
Incorrect input values 1 2

Sum 28 10 22

not labeled with these code changes in the original dataset.
There are 12 tests JTESTMIGRATOR could not successfully

migrate, because it performed certain code transformations
incorrectly. In 9 tests, JTESTMIGRATOR finds and replaces
similar methods that are not actually similar. For example,
in Figure 4, JTESTMIGRATOR correctly finds and replaces
addProperty (line 6) and get (line 8) methods from gson
with put (line 28) and get (line 30) methods from fastjson,
respectively. However, JTESTMIGRATOR incorrectly identifies
isValid (line 29) and getRawType (line 32) in fastjson
as similar methods to has (line 7) and getAsString (10)
from gson, respectively. In this example, JTESTMIGRATOR
also correctly adjusts type (Object, line 30) based on the
return type of get but fails to remove the affected method
getRawType (line 32), resulting in a compilation error.

JTESTMIGRATOR performs incorrect type conversion in
3 of the 12 unsuccessfully migrated tests. It also generates
incorrect (random) input values in 3 tests. For example,
getAsBoolean method in gson does not take a parameter,
whereas a similar method getBoolean in JSON-java takes
a string parameter. Therefore, while migrating a test contain-
ing getAsBoolean, JTESTMIGRATOR generates a random
string input and passes it to getBoolean, resulting in a test
failure.

RQ1: JTESTMIGRATOR successfully migrates 76 (73%)
tests, allowing automatic test reuse for 32 (76%) methods
across the 5 libraries. Reasons for unsuccessful migrations
include unsupported code transformations or incorrectly per-
formed transformations.

B. RQ2: Qualitative analysis of the migrated tests

1) Method: While passing tests is a positive result, it does
not tell us anything about what is in the migrated tests. For
example, JTESTMIGRATOR could create empty tests (i.e., not

Fig. 4: A test from gson and the migrated tests for fastjson

Fig. 5: A test from gson and the migrated tests for fastjson

migrate anything) and still result in a passing test. Therefore, in
this RQ, we are interested in diving deeper into the results of
the migration. Specifically, we compare JTESTMIGRATOR’s
76 successfully migrated tests (i.e., those that pass) to the
corresponding human migrated tests in JTESTMIGBENCH. If
they are different, we investigate the reasons for differences.

2) Results: We find that 66 (87%) of the JTESTMIGRA-
TOR’s successfully migrated tests are exactly the same as
the corresponding human migrated tests. Table V shows the
reasons for differences in the remaining 10 tests. Note that
there are multiple reasons for the differences in a test.

In 7 of the tests, the differences is due to the human
migrator performing some form of refactoring. In the example

TABLE V: Reasons for differences in JTESTMIGRATOR’s
migrated tests and human migrated tests

Reasons #Tests

Refactoring performed in human migrated tests 7
JTESTMIGRATOR was not successful in transforming some code elements 3
Use of alternate semantically similar code elements 2

Total 12

Fig. 6: A test from gson and the migrated tests for JSON-java

in Figure 5, JTESTMIGRATOR correctly used MoreAsserts
(line 33), which is a helper class in gson that declares
various assertion methods. Whereas, the human migrator
extracted assertEqualsAndHashCode method declared
in MoreAsserts and placed it in the migrated test class.
In another example in Figure 6, JTESTMIGRATOR replaces
JsonPrimitive with JSONArray (line 21) whereas the
human migrator simply passes the integer 1 instead of using
any type (line 13). These cases show how human intelligence
plays a role during code transformation.

In 3 of the 10 different tests, JTESTMIGRATOR could not
replace a field accessed in a statement, and therefore removed
the entire statement to avoid compilation errors. In the ex-
ample in Figure 5, JTESTMIGRATOR removed the statement
b.add(Jsonnull.INSTANCE) on line 10, because it
could not replace the accessed field Jsonnull.INSTANCE.
Note that these tests still pass and have assertions, still
making them useful to the target libraries. Finally, in 2 of
the 10 tests, JTESTMIGRATOR uses a different semantically
similar method. In the example in Figure 6, JTESTMIGRATOR
replaces the add method from gson with a similar method
append from JSON-java (line 21) without affecting the end
result, whereas the human migrator replaces it with put (line
13). These cases as well as refactoring cases indicate that there
are multiple ways to correctly transform code elements.

RQ2: 87% of the JTESTMIGRATOR’s successfully migrated
tests are exactly the same as the corresponding human
migrated tests, indicating that JTESTMIGRATOR can migrate
tests that look like human migrated tests. The different mi-
grated tests indicate that there are multiple ways to correctly
transform a code element.

C. RQ3: Usefulness of successfully migrated tests

1) Method: In this RQ, we are interested in checking
whether the JTESTMIGRATOR’s 76 successfully migrated tests
for the 32 methods augment existing tests by improving the

Fig. 7: Coverage improved by the successfully migrated tests
(M=Method ID, I=Instruction Coverage, B=Branch Coverage)

methods’ code coverage. To determine this, we measure the
methods’ coverage using JaCoCo [38]. We first measure the
methods’ instruction and branch coverage without migrating
tests. For the methods that have less than 100% instruction
or branch coverage, we again measure their instruction and
branch coverage after including successfully migrated tests.

2) Results: 6 of the 32 methods have less than 100%
instruction or branch coverage. Figure 7 shows the instruction
and branch coverage for the 6 methods before and after test
migration. We find that 10 (13%) of the successfully migrated
tests improve coverage of 4 methods. isEmpty method (M1
in Figure 7) in gson is not covered by any existing tests. In
this case, a JTESTMIGRATOR’s migrated test increases the
instruction coverage by 100%. For the remaining 3 methods
(M4, M5, and M6) in fastjson, JTESTMIGRATOR’s migrated
tests increase their instruction or branch coverage although
they had high existing coverage (>82%). The libraries used in
the evaluation are highly popular with many unit tests. Despite
that, the migrated tests increase coverage of the 4 methods.

RQ3: 13% of the JTESTMIGRATOR’s successfully migrated
tests increase code coverage of 4 methods, showing some
practical values of JTESTMIGRATOR’s migrated tests.

D. Threats to Validity

Construct validity For evaluating JTESTMIGRATOR, we
systematically select only those JUnit tests from JTEST-
MIGBENCH that require the types of code transformations
JTESTMIGRATOR supports. The purpose is to evaluate the
effectiveness of JTESTMIGRATOR in performing the types of
code transformations it supports rather than finding what it
cannot perform, which we already know from JTESTMIGTAX.

Internal validity We consider a test successfully migrated
only if it passes, but a migrated test may fail due to bugs in
the target system. However, the results (RQ1) show that the un-
successful migrations are due to incorrect code transformations
rather than bugs. We manually compare the tests migrated by
JTESTMIGRATOR with their corresponding manually migrated
tests to find the reasons for unsuccessful migrations (RQ1) and
qualitatively analyze the migrated tests (RQ2). Manual tasks
are subject to mistakes, and they might cause biased and hard-
to-reproduce results. We release all the artifacts used in this
study for further validation [29].

External validity While we cannot claim that our results
generalize beyond our subjects, we perform our evaluation by
attempting migration of 104 unit tests for 42 methods. Previous
test reuse work that reuses tests across different applications
was evaluated on only 12 to 29 methods [23], [26].

VI. DISCUSSION

A. Implications of the Results

We proposed a technique and tool to migrate unit tests be-
tween applications with similar functionality. JTESTMIGRA-
TOR was able to successfully migrate 73% of the tests, making
them directly usable in the target libraries. Furthermore, 87%
of those successfully migrated tests looked exactly the same
as the human migrated tests in JTESTMIGBENCH, which
means JTESTMIGRATOR could have saved human effort while
producing the same results. Moreover, 13% of the successfully
migrated tests incresed coverage of the target systems, showing
some practical values of test migration.

Although, to the best of our knowledge, there are no
tools that we can directly compare JTESTMIGRATOR against,
SKIPPER [25] and METALLICUS [26] are the two closest
tools that reuse unit tests by performing limited code trans-
formation. SKIPPER reported migrating 245 (80%) passing
tests out of 308 tests. However, the target applications used
to evaluate SKIPPER are minimally modified versions of the
corresponding source applications, which is why 23% of the
tests migrated by SKIPPER do not even require code transfor-
mation. METALLICUS, on the other hand, inserts assertions in
syntactically valid manually-created test templates instead of
directly transforming original tests. Different from both these
efforts, JTESTMIGRATOR migrates tests for target libraries
that are completely different than the source libraries and
directly transforms original tests. Overall, our results are
promising and show that the concept of reusing unit tests
across similar applications can be practical and useful.

B. Key Challenges in Unit Test Migration

1) Finding Semantically Similar Code for Code Transfor-
mation: A key challenge in migrating unit tests is finding
semantically similar code (methods and classes). Most clone
detection techniques still struggle to find semantically similar
code [39]. Overall, our evaluation showed that our approach
performed relatively well in finding semantically similar helper
methods and types. However, there are shortcomings espe-
cially when a Java class in an application has multiple methods
with similar names and the same parameter types. Large
Language Models have shown some promising results in
detecting code clones [40]. In general, advances in research
related to detecting semantically similar methods can also
further improve the results of test migration [26], [41], [42].

2) Implementation Differences: The challenge does not end
at finding similar methods or types. Even similar methods
may have slight implementation differences that may result in
unsuccessful test migrations. We mainly observed two kinds of
implementation differences. First, semantically similar meth-
ods return the same output, but with different data types, for

the same input as we saw in Figure 4 for get method (line 8
and 30). JTESTMIGRATOR currently maintains a list of some
common data types for type conversion. However, future test
reuse techniques might need to explore additional techniques
for type conversion [43] such as human-in-the-loop [44]. Sec-
ond, semantically similar methods may have some implemen-
tation differences in how they handle certain input or corner
cases. In this case, we have to change the expected outputs
in the assertions while migrating tests, popularly known as
the oracle problem [45], which JTESTMIGRATOR does not
handle. It is also an open problem that researchers have tried
to solve through various techniques [17], [44], [46], [47].
Overall, techniques to adjust data types and expected outputs
can improve the results of the migration.

C. Applicability of JTESTMIGRATOR

We envision various practical scenarios where JTESTMI-
GRATOR can be used. One main scenario is to use JTESTMI-
GRATOR along with code [48], [49] and test [22], [23], [50]
recommendation techniques. For example, once developers use
the recommended code, they can migrate the corresponding
tests using JTESTMIGRATOR to maintain code quality. JTEST-
MIGRATOR can also be integrated into test recommendation
techniques to eliminate manual test reuse effort.

VII. RELATED WORK

Unit Test Tracing, Recommendation, and Reuse: White
et al. [24] used various criteria, such as the similarity of
method and test name, to trace tests. JTESTMIGRATOR also
uses similar criteria to find tests for the target methods. To
help developers in writing tests manually, researchers have
proposed techniques to recommend tests based on the source
method similarity [23], [50], [51]. Similar to some of these
techniques, JTESTMIGRATOR also uses word2vec to find
similar methods. However, while these techniques stop at
recommending tests, JTESTMIGRATOR transforms the tests
to reuse them in target applications. Sondhi et al. [22] and
White et al. [23] adapted some of the recommended tests
manually to show that tests can be reused across applications.
Sondhi et al. [26] later proposed METALLICUS to reuse oracles
of the recommended tests. METALLICUS requires that users
provide a manually written template with at least one valid
test, whereas JTESTMIGRATOR directly copies the tests to be
reused from the source application to the target application
and performs code transformation. Makady and Walker [25]
proposed SKIPPER that directly copies the tests to be reused
from the source to the target application. However, SKIPPER
is designed to reuse tests in the target application that is
created by removing some code (fields, methods, or classes)
from the source application. Therefore, SKIPPER does not need
to perform various code transformations, such as finding and
replacing similar types and method calls. SKIPPER requires a
manually written test reuse plan, which defines the code to be
reused in the target application. JTESTMIGRATOR does not
require a test reuse plan and uses a semantic code mapping
technique to transform tests. Zhang et al. [52] proposed a

technique to reuse unit tests for testing reused code/clones.
However, rather than transforming test code, they transform
cloned code to make the tests executable for the clone.

Unit Test Generation: There has been a lot of research
for generating test inputs [53]–[55], [55], test oracles [17],
[45], [56], [56], and test cases [13], [57], [58]. We limit our
discussion to JCrasher [13], Randoop [58], and EvoSuite [14]
that generate JUnit tests. These tools generate sequences
of constructor/method calls, where each sequence acts as a
unit test. The tools then use different techniques to generate
test inputs and oracles. The main purpose of JCrasher is to
detect bugs by causing the SUT to throw a runtime excep-
tion. Therefore, JCrasher exercises public methods by passing
random inputs. Whereas, to avoid generating redundant and
illegal inputs, Randoop uses a feedback-directed approach to
generate test inputs. EvoSuite uses an evolutionary search-
based approach optimized for coverage criteria to generate unit
tests. In contrast to these tools, JTESTMIGRATOR reuses unit
tests across applications by transforming the tests.

GUI Test Reuse in Mobile Apps: Behrang and Orso have
a recent line of work on migrating GUI tests between Android
apps [59]–[61]. Their recent work [59] and the work proposed
by Lin et al. [62] leverage a Word2Vec model to find similar
GUI elements. The techniques use a statically extracted GUI
model to transform the GUI event sequences present in the
tests. To account for a huge search space of GUI tests, Mariani
et al. [63] proposed an evolutionary approach to reuse GUI
tests across Android apps. Instead of directly transforming
tests, Hu et al. [64] proposed a technique to create modular
reusable tests that can be then reused across similar apps.
Qin et al. [65] proposed a technique that migrates GUI tests
across different platforms (iOS and Android). To facilitate the
evaluation of GUI test reuse efforts, Zhao et al. [66] proposed
a framework, which includes different GUI test migration
techniques and a benchmark of reused GUI tests, to evaluate
GUI test reuse across mobile apps. Different from the above
work which focuses on GUI test migration in mobile apps,
our work migrates unit tests across Java applications, which
comes with different challenges due to the level of abstraction
at which the technique works.

VIII. CONCLUSION

We proposed a technique and corresponding implementa-
tion, JTESTMIGRATOR, to migrate Java unit tests between
similar applications. We evaluated JTESTMIGRATOR by at-
tempting migrations of 104 unit tests across 5 popular libraries.
JTESTMIGRATOR successfully migrated 73% of the tests,
allowing their direct use in the target libraries. In 87% of
these, JTESTMIGRATOR produced tests that are exactly the
same as the corresponding human-migrated tests. Moreover,
13% of the successfully migrated tests increased code coverage
of the target systems. Although this is the first attempt to
migrate unit tests across applications by using a completely
automated technique, our results are promising and motivate
further research in this direction.

REFERENCES

[1] V. Garousi and M. V. Mäntylä, “A systematic literature review of litera-
ture reviews in software testing,” Information and Software Technology,
vol. 80, pp. 195–216, 2016.

[2] V. Garousi and J. Zhi, “A survey of software testing practices in canada,”
Journal of Systems and Software, vol. 86, no. 5, pp. 1354–1376, 2013.

[3] P. Runeson, “A survey of unit testing practices,” IEEE software, vol. 23,
no. 4, pp. 22–29, 2006.

[4] E. M. Maximilien and L. Williams, “Assessing test-driven development
at ibm,” in 25th International Conference on Software Engineering,
2003. Proceedings. IEEE, 2003, pp. 564–569.

[5] J. Langr, A. Hunt, and D. Thomas, Pragmatic unit testing in java 8 with
JUnit. Pragmatic Bookshelf, 2015.

[6] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit testing,”
Empirical Software Engineering, vol. 11, no. 1, pp. 5–31, 2006.

[7] J. Shore, “Fail fast [software debugging],” IEEE Software, vol. 21, no. 5,
pp. 21–25, 2004.

[8] E. Dustin, T. Garrett, and B. Gauf, Implementing automated software
testing: How to save time and lower costs while raising quality. Pearson
Education, 2009.

[9] P. S. Kochhar, X. Xia, and D. Lo, “Practitioners’ views on good software
testing practices,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 2019, pp. 61–70.

[10] E. Daka and G. Fraser, “A survey on unit testing practices and problems,”
in 2014 IEEE 25th International Symposium on Software Reliability
Engineering. IEEE, 2014, pp. 201–211.

[11] A. Deak, T. Stålhane, and G. Sindre, “Challenges and strategies for
motivating software testing personnel,” Information and software Tech-
nology, vol. 73, pp. 1–15, 2016.

[12] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random
testing for java,” in Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion,
2007, pp. 815–816.

[13] C. Csallner and Y. Smaragdakis, “Jcrasher: an automatic robustness
tester for java,” Software: Practice and Experience, vol. 34, no. 11,
pp. 1025–1050, 2004.

[14] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 416–419.

[15] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults
in a financial application,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP). IEEE, 2017, pp. 263–272.

[16] Z. Fan, “A systematic evaluation of problematic tests generated by
evosuite,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). IEEE, 2019,
pp. 165–167.

[17] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the crowd
solve the oracle problem?” in 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation. IEEE, 2013, pp. 342–
351.

[18] G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical inves-
tigation on the readability of manual and generated test cases,” in 2018
IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 2018, pp. 348–3483.

[19] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2?”
in Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2017, pp. 57–67.

[20] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N. Li,
“Scaling up automated test generation: Automatically generating main-
tainable regression unit tests for programs,” in 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2011). IEEE, 2011, pp. 23–32.

[21] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated white-box test generation really help software testers?” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, 2013, pp. 291–301.

[22] D. Sondhi, D. Rani, and R. Purandare, “Similarities across libraries:
Making a case for leveraging test suites,” in 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST). IEEE, 2019,
pp. 79–89.

[23] R. White, J. Krinke, E. T. Barr, F. Sarro, and C. Ragkhitwetsagul,
“Artefact relation graphs for unit test reuse recommendation,” in 2021
14th IEEE Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2021, pp. 137–147.

[24] R. White, J. Krinke, and R. Tan, “Establishing multilevel test-to-code
traceability links,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 861–872.

[25] S. Makady and R. J. Walker, “Validating pragmatic reuse tasks by
leveraging existing test suites,” Software: Practice and Experience,
vol. 43, no. 9, pp. 1039–1070, 2013.

[26] D. Sondhi, M. Jobanputra, D. Rani, S. Purandare, S. Sharma, and
R. Purandare, “Mining similar methods for test adaptation,” IEEE
Transactions on Software Engineering, 2021.

[27] M. Landhäußer and W. F. Tichy, “Automated test-case generation by
cloning,” in 2012 7th International Workshop on Automation of Software
Test (AST). IEEE, 2012, pp. 83–88.

[28] A. K. Jha, M. Islam, and S. Nadi, “Jtestmigbench and jtestmigtax: A
benchmark and taxonomy for unit test migration,” in 2023 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2023, pp. 713–717.

[29] Artifacts, “Migrating unit tests across applications,”
https://figshare.com/s/9172d87fbf0a188f9ccf, 2024.

[30] Gson, https://github.com/google/gson, 2024.
[31] Fastjson, https://github.com/alibaba/fastjson, 2024.
[32] G. J. Myers, T. Badgett, and C. Sandler, The art of software testing.

Wiley Online Library, 2012, vol. 3.
[33] Gradle, https://gradle.org/, 2024.
[34] Maven, https://maven.apache.org/, 2024.
[35] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[36] P. Liu, L. Li, Y. Zhao, X. Sun, and J. Grundy, “Androzooopen: Collecting
large-scale open source android apps for the research community,” in
2020 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR). IEEE, 2020.

[37] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8. Soviet
Union, 1966, pp. 707–710.

[38] JaCoCo, https://www.eclemma.org/jacoco/, 2024.
[39] A. Walker, T. Cerny, and E. Song, “Open-source tools and benchmarks

for code-clone detection: past, present, and future trends,” ACM SIGAPP
Applied Computing Review, vol. 19, no. 4, pp. 28–39, 2020.

[40] S. Dou, J. Shan, H. Jia, W. Deng, Z. Xi, W. He, Y. Wu, T. Gui,
Y. Liu, and X. Huang, “Towards understanding the capability of large
language models on code clone detection: A survey,” arXiv preprint
arXiv:2308.01191, 2023.

[41] M. Kamp, P. Kreutzer, and M. Philippsen, “Sesame: a data set of se-
mantically similar java methods,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
529–533.

[42] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Purandare,
“Modeling functional similarity in source code with graph-based siamese
networks,” IEEE Transactions on Software Engineering, 2021.

[43] A. Ketkar, O. Smirnov, N. Tsantalis, D. Dig, and T. Bryksin, “Inferring
and applying type changes,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1206–1218.

[44] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “An empirical
validation of oracle improvement,” IEEE Transactions on Software
Engineering, 2019.

[45] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software
engineering, vol. 41, no. 5, pp. 507–525, 2014.

[46] V. Terragni, G. Jahangirova, P. Tonella, and M. Pezzè, “Evolutionary
improvement of assertion oracles,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1178–1189.

[47] N. Alshahwan, M. Harman, and A. Marginean, “Software testing re-
search challenges: An industrial perspective,” in 2023 IEEE Conference
on Software Testing, Verification and Validation (ICST). IEEE, 2023,
pp. 1–10.

[48] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma: Code
recommendation via structural code search,” Proceedings of the ACM
on Programming Languages, vol. 3, no. OOPSLA, pp. 1–28, 2019.

[49] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and Y. L.
Traon, “Facoy: a code-to-code search engine,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 946–957.

[50] W. Janjic and C. Atkinson, “Utilizing software reuse experience for
automated test recommendation,” in 2013 8th International Workshop
on Automation of Software Test (AST). IEEE, 2013, pp. 100–106.

[51] C. Zhu, W. Sun, Q. Liu, Y. Yuan, C. Fang, and Y. Huang, “Homotr:
online test recommendation system based on homologous code match-
ing,” in 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2020, pp. 1302–1306.

[52] T. Zhang and M. Kim, “Automated transplantation and differential
testing for clones,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 2017, pp. 665–676.

[53] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet?(e),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 429–440.

[54] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su,
“Dynamic test input generation for web applications,” in Proceedings
of the 2008 international symposium on Software testing and analysis,
2008, pp. 249–260.

[55] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[56] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineer-
ing, 2020, pp. 1398–1409.

[57] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Transactions on Software Engineering, vol. 38, no. 2,
pp. 278–292, 2011.

[58] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in 29th International Conference on Software
Engineering (ICSE’07). IEEE, 2007, pp. 75–84.

[59] F. Behrang and A. Orso, “Test migration between mobile apps with
similar functionality,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 54–65.

[60] ——, “Automated test migration for mobile apps,” in Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings, 2018, pp. 384–385.

[61] ——, “Test migration for efficient large-scale assessment of mobile
app coding assignments,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018, pp.
164–175.

[62] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test transfer across mobile
apps through semantic mapping,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 42–53.

[63] L. Mariani, M. Pezzè, V. Terragni, and D. Zuddas, “An evolu-
tionary approach to adapt tests across mobile apps,” arXiv preprint
arXiv:2104.05233, 2021.

[64] G. Hu, L. Zhu, and J. Yang, “Appflow: using machine learning to
synthesize robust, reusable ui tests,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp. 269–
282.

[65] X. Qin, H. Zhong, and X. Wang, “Testmig: Migrating gui test cases from
ios to android,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 284–295.

[66] Y. Zhao, J. Chen, A. Sejfia, M. Schmitt Laser, J. Zhang, F. Sarro,
M. Harman, and N. Medvidovic, “Fruiter: a framework for evaluating ui
test reuse,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1190–1201.

